首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil redistribution on arable land significantly affects lateral and vertical soil carbon (C) fluxes (caused by C formation and mineralization) and soil organic carbon (SOC) stocks. Whether this serves as a (C) sink or source to the atmosphere is a controversial issue. In this study, the SPEROS‐C model was modified to analyse erosion induced lateral and vertical soil C fluxes and their effects upon SOC stocks in a small agricultural catchment (4·2 ha). The model was applied for the period between 1950 and 2007 covering 30 years of conventional tillage (1950–1979) followed by 28 years of conservation tillage (1980–2007). In general, modelled and measured SOC stocks are in good agreement for three observed soil layers. The overall balance (1950–2007) of erosion induced lateral and vertical C fluxes results in a C loss of ?4·4 g C m–2 a–1 at our test site. Land management has a significant impact on the erosion induced C fluxes, leading to a predominance of lateral C export under conventional and of vertical C exchange between soil and atmosphere under conservation agriculture. Overall, the application of the soil conservation practices, with enhanced C inputs by cover crops and decreased erosion, significantly reduced the modelled erosion induced C loss of the test site. Increasing C inputs alone, without a reduction of erosion rates, did not result in a reduction of erosion induced C losses. Moreover, our results show that the potential erosion induced C loss is very sensitive to the representation of erosion rates (long‐term steady state versus event driven). A first estimate suggests that C losses are very sensitive to magnitude and frequency of erosion events. If long‐term averages are dominated by large magnitude events modelled erosion induced C losses in the catchment were significantly reduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Agroforestry systems are promoted for providing a number of ecosystem services and environmental benefits, including soil protection and carbon sequestration. This study proposes a modelling approach to quantify the impact of soil redistribution on soil organic carbon (SOC) storage in a temperate hedgerow landscape. Evolution of SOC stocks at the landscape scale was examined by simulating vertical and horizontal SOC transfers in the 0–105 cm soil layer due to soil redistribution by tillage and water processes. A spatially explicit SOC dynamics model (adapted from RothC‐26.3) was used, coupled with a soil‐redistribution model (LandSoil). SOC dynamics were simulated over 90 years in an agricultural hedgerow landscape dedicated to dairy farming, with a mix of cropping and grasslands. Climate and land use were simulated considering business‐as‐usual scenarios derived from existing information on the study area. A net decrease in SOC stocks was predicted at the end of the simulation period. Soil redistribution induced a net SOC loss equivalent to 2 kg C ha?1 yr?1 because of soil exportation out of the study site and an increase in SOC mineralization. Hedgerows and woods were the only land use in which soil redistribution induced net SOC storage. Soil tillage was the main process that induced soil redistribution within cultivated fields. Soil exportation out of the study area was due to erosion by water, but remained low because of the protective role of the hedgerow network. These soil transfers redistributed SOC stocks in the landscape, mostly within cultivated fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Reliable quantitative data on the extent and rates of soil erosion are needed to understand the global significance of soil‐erosion induced carbon exchange and to underpin the development of science‐based mitigation strategies, but large uncertainties remain. Existing estimates of agricultural soil and soil organic carbon (SOC) erosion are very divergent and span two orders of magnitude. The main objective of this study was to test the assumptions underlying existing assessments and to reduce the uncertainty associated with global estimates of agricultural soil and SOC erosion. We parameterized a simplified erosion model driven by coarse global databases using an empirical database that covers the conterminous USA. The good agreement between our model results and empirical estimates indicate that the approach presented here captures the essence of agricultural erosion at the scales of continents and that it may be used to predict the significance of erosion for the global carbon cycle and its impact on soil functions. We obtained a global soil erosion rate of 10.5 Mg ha‐1 y‐1 for cropland and 1.7 Mg ha‐1 y‐1 for pastures. This corresponds to SOC erosion rates of 193 kg C ha‐1 y‐1 for cropland and 40.4 kg C ha‐1 y‐1 for eroding pastures and results in a global flux of 20.5 (±10.3) Pg y‐1 of soil and 403.5 (±201.8) Tg C y‐1. Although it is difficult to accurately assess the uncertainty associated with our estimates of global agricultural erosion, mainly due to the lack of model testing in (sub‐)tropical regions, our estimates are significantly lower than former assessments based on the extrapolation of plot experiments or global application of erosion models. Our approach has the potential to quantify the rate and spatial signature of the erosion‐induced disturbance at continental and global scales: by linking our model with a global soil profile database, we estimated soil profile modifications induced by agriculture. This showed that erosion‐induced changes in topsoil SOC content are significant at a global scale (an average SOC loss of 22% in 50 years) and agricultural soils should therefore be considered as dynamic systems that can change rapidly. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The effect of erosional detachment, transport, and deposition of topsoil on the stock of soil organic matter (SOM) and its association with soil minerals has been a focus of a growing number of studies. A particularly lively debate is currently centered on the questions of whether terrestrial sedimentation of previously eroded SOM may constitute a relevant sink for atmospheric carbon dioxide (CO2), and how ‘stable’ such carbon (C) might be on multidecadal timescales. In this commentary, we illustrate how redistribution of eroded SOM within a landscape can create situations that are not adequately described by the jargon commonly used to characterize C turnover dynamics. We argue that more quantitative and scientifically rigorous categories are needed to describe soil C turnover and to promote the development of innovative, numerical models of C dynamics in landscapes characterized by significant mass movement. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Despite soil erosion through water being a ubiquitous process and its environmental consequences being well understood, its effects upon the global carbon cycle still remain largely uncertain. How much soil organic carbon (SOC) is removed each year from soils by sheet wash, an important if not the most efficient mechanism of detachment and transport of surficial soil material? What are the main environnemental controls worldwide? These are important questions which largely remain unanswered. Empirical data from 240 runoff plots studied over entire rainy seasons from different regions of the world were analysed to estimate particulate organic carbon (POC) losses (POCL), and POC enrichment in the sediments compared to the bulk soil (ER), which can be used as a proxy of the fate of the eroded POC. The median POCL was 9.9 g C m‐2 y‐1 with highest values observed for semi‐arid soils (POCL = 10.8 g C m‐2 y‐1), followed by tropical soils (POCL = 6.4 g C m‐2 y‐1) and temperate soils (POCL = 1.7 g C m‐2 y‐1). Considering the mean POCL of 27.2 g C m‐2 y‐1, the total amount of SOC displaced annually by sheet erosion from its source would be 1.32 ± 0.20 Gt C, i.e. 14.6% of the net annual fossil fuel induced C emissions of 9 Gt C. Because of low sediment enrichment in POC, erosion‐induced CO2 emissions are likely to be limited in clayey environments while POC burial within hillslopes is likely to constitute an important carbon sink. In contrast, most of the POC displaced from sandy soils is likely to be emitted to the atmosphere. These results underpin the major role sheet wash plays in the displacement of SOC from its source and in the fate of the eroded SOC, with large variations across the different pedo‐climatic regions of the world. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability of soil respiration. We investigated growing season soil respiration in a ~393 ha subalpine watershed in Montana across eight riparian–hillslope transitions that differed in slope, upslope accumulated area (UAA), aspect, and groundwater table dynamics. We collected daily‐to‐weekly measurements of soil water content (SWC), soil temperature, soil CO2 concentrations, surface CO2 efflux, and groundwater table depth, as well as soil C and N concentrations at 32 locations from June to August 2005. Instantaneous soil surface CO2 efflux was not significantly different within or among riparian and hillslope zones at monthly timescales. However, cumulative integration of CO2 efflux during the 83‐day growing season showed that efflux in the wetter riparian zones was ~25% greater than in the adjacent drier hillslopes. Furthermore, greater cumulative growing season efflux occurred in areas with high UAA and gentle slopes, where groundwater tables were higher and more persistent. Our findings reveal the influence of landscape position and groundwater table dynamics on riparian versus hillslope soil CO2 efflux and the importance of time integration for assessment of soil CO2 dynamics, which is critical for landscape‐scale simulation and modelling of soil CO2 efflux in complex landscapes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Soil erosion has been identified as a potential global carbon sink since eroded organic matter is replaced at source and eroded material is readily buried. However, this argument has relied on poor estimates of the total fate of in‐transit particulates and could erroneously imply soil erosion could be encouraged to generate carbon stores. These previous estimates have not considered that organic matter can also be released to the atmosphere as a range of greenhouse gases, not only carbon dioxide (CO2), but also the more powerful greenhouse gases methane (CH4) and nitrous oxide (N2O). As soil carbon lost by erosion is only replaced by uptake of CO2, this could represent a considerable imbalance in greenhouse gas warming potential, even if it is not significant in terms of overall carbon flux. This work therefore considers the flux of particulate organic matter through UK rivers with respect to both carbon fluxes and greenhouse gas emissions. The results show that, although emissions to the atmosphere are dominated by CO2, there are also considerable fluxes of CH4 and N2O. The results suggest that soil erosion is a net source of greenhouse gases with median emission factors of 5.5, 4.4 and 0.3 tonnes CO2eq/yr for one tonne of fluvial carbon, gross carbon erosion and gross soil erosion, respectively. This study concludes that gross soil erosion would therefore only be a net sink of both carbon and greenhouse gases if all the following criteria are met: the gross soil erosion rate were very low (<91 tonnes/km2/yr); the eroded carbon were completely replaced by new soil organic matter; and if less than half of the gross erosion made it into the stream network. By establishing the emission factor for soil erosion, it becomes possible to properly account for the benefits of good soil management in minimizing losses of greenhouse gases to the atmosphere as a by‐product of soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon dioxide (CO2), to the atmosphere. Understanding the magnitude and mechanisms of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon cycle. This research examines the SOC content and enrichment of dust emissions measured using Big Spring Number Eight (BSNE) wind‐vane samplers across five land types in the rangelands of western Queensland, Australia. Our results show that sandy soils and finer particulate quartz‐rich soils are more efficient at SOC emission and have larger SOC dust enrichment than clay‐rich aggregated soils. The SOC enrichment ratios of dusts originating from sites with sand‐rich soil ranged from 2·1–41·9, while the mean enrichment ratio for dusts originating from the clay soil was 2·1. We hypothesize that stronger inter‐particle bonds and the low grain density of the aggregated clay soil explain its reduced capacity to release SOC during saltation, relative to the particulate sandy soils. We also show that size‐selective sorting of SOC during transport may lead to further enrichment of SOC dust emissions. Two dust samples from regional transport events were found to contain 15–20% SOC. These preliminary results provide impetus for additional research into dust SOC enrichment processes to elucidate the impact of wind erosion on SOC flux and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Soil organic carbon (SOC) is an important component of the global carbon cycle yet is rarely quantified adequately in terms of its spatial variability resulting from losses of SOC due to erosion by water. Furthermore, in drylands, little is known about the effect of widespread vegetation change on changes in SOC stores and the potential for water erosion to redistribute SOC around the landscape especially during high‐magnitude run‐off events (flash floods). This study assesses the change in SOC stores across a shrub‐encroachment gradient in the Chihuahuan Desert of the south‐west USA. A robust estimate of SOC storage in surface soils is presented, indicating that more SOC is stored beneath vegetation than in bare soil areas. In addition, the change in SOC storage over a shrub‐encroachment gradient is shown to be nonlinear and highly variable within each vegetation type. Over the gradient of vegetation change, the heterogeneity of SOC increases, and newer carbon from C3 plants becomes dominant. This increase in the heterogeneity of SOC is related to an increase in water erosion and SOC loss from inter‐shrub areas, which is self‐reinforcing. Shrub‐dominated drylands lose more than three times as much SOC as their grass counterparts. The implications of this study are twofold: (1) quantifying the effects of vegetation change on carbon loss via water erosion and the highly variable effects of land degradation on soil carbon stocks is critical. (2) If landscape‐scale understanding of carbon loss by water erosion in drylands is required, studies must characterize the heterogeneity of ecosystem structure and its effects on ecosystem function across ecotones subject to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Soils release more carbon, primarily as carbon dioxide (CO2), per annum than current global anthropogenic emissions. Soils emit CO2 through mineralization and decomposition of organic matter and respiration of roots and soil organisms. Given this, the evaluation of the effects of abiotic factors on microbial activity is of major importance when considering the mitigation of greenhouse gases emissions. Previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. A limited number of studies have illustrated the importance of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial laboratory experiment with three soil types after sieving (clay, silt and sand soil), three different bulk densities (1·1 g cm–3, 1·3 g cm–3, 1·5 g cm–3) and three different exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). The results demonstrated CO2 release varied significantly with bulk density, exposure to rain and time. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 minutes and 30 minutes rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1·1 g cm–3 emitted 32% more CO2 than soil compacted to 1·5 g cm–3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Soil erosion induces soil redistribution within the landscape and thus contributes to the spatial variability of soil quality. This study complements a previous experimentation initiated by the authors focusing on soil redistribution as a result of soil erosion, as indicated by caesium‐137 (137Cs) measurements, in a small agricultural field in Canada. The spatial variability of soil organic matter (SOM) was characterized using geostatistics, which consider the randomized and structured nature of spatial variables and the spatial distribution of the samples. The spatial correlation of SOM (in percentages) patterns in the topsoil was established taking into account the spatial structure present in the data. A significant autocorrelation and reliable variograms were found with a R2 ≥ 0·9, thus demonstrating a strong spatial dependence. Ordinary Kriging (OK) interpolation provided the best cross validation (r2 = 0·35). OK and inverse distance weighting power two (IDW2) interpolation approaches produced similar estimates of the total SOM content of the topsoil (0–20 cm) of the experimental field, i.e. 211 and 213 tonnes, respectively. However, the two approaches produced differences in the spatial distribution patterns and the relative magnitude of some SOM content classes. The spatialization of SOM and soil redistribution variability – as evidenced by 137Cs measurements – is a first step towards the assessment of the impact of soil erosion on SOM losses to recommend conservation measures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   

13.
水文节律是影响湖泊湿地土壤碳循环的重要因素."堑秋湖"是鄱阳湖传统的渔业生产方式,对鄱阳湖碟形湖水文节律具有显著影响.因此,本文研究了"堑秋湖"对鄱阳湖洲滩土壤碳循环的影响.结果表明,"堑秋湖"围堤内外洲滩土壤总有机碳含量无显著差异,但围堤内土壤轻组有机碳含量比围堤外低35.03%.围堤内土壤有机碳(SOC)矿化速率明显高于围堤外.围堤内SOC矿化的平均Q10为2.72,比围堤外低4.83%,但两者SOC矿化的水分敏感性没有显著差异.围堤内外SOC矿化速率分别与土壤可溶性有机碳和土壤轻组氮含量相关关系最为显著.综上所述,"堑秋湖"围堤已经改变了鄱阳湖洲滩的土壤碳循环过程.模拟湖泊湿地土壤碳循环时需要充分考虑当地渔业生产的影响.  相似文献   

14.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Knowledge of seasonal variation in soil structural and related properties is important for the determination of critical periods during which soil is susceptible to accelerated erosion and other degradative processes. The purpose of this research was to evaluate the magnitude of seasonal variations in selected soil and deposited sediment properties in relation to soil erodibility for a Miamian silt-loam soil (Typic Hapludalf) in central Ohio. Erosion plots (USLE-type) were established on a 4·5% slope and maintained under bare, ploughed conditions from 1988 to 1991. Particle size distribution, bulk density(ρb), percentage water stable aggregates (WSA), soil organic carbon (SOC), and total soil nitrogen (TSN) of both soil and sediment samples were monitored between Autumn 1989 and Spring 1991. The soil and sediment particle size distributions followed no clear seasonal trends. Soil ρb increased following tillage (1·20 Mg m−3) and was highest (1·45 Mg m−3) during the autumn owing to soil slumping and consolidation upon drying. Low winter and spring values of ρb and %WSA (20–50% lower than in autumn) were attributed to excessive wetness and freeze–thaw effects. Both SOC and soil TSN contents progressively declined (from 2·18 to 1·79% and 1·97 to 1·75 g kg−1, respectively) after ploughing owing to maintenance of plots under bare, fallow conditions. Spring highs and autumn lows of sediment SOC (3·12 vs. 2·44%) and TSN (2·70 vs. 1·96 g kg−1) contents were a result of the combined effects of soil microbial activity and rainfall erosivity. Soil properties such as bulk density, SOC and WSA, which vary seasonally, can potentially serve as predictors of seasonal soil erodibility, which, in turn, could improve the predictive capacity of soil erosion prediction models. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Global peatlands store an unparalleled proportion of total global organic carbon but it is vulnerable to erosion into fluvial systems. Fluvial networks are being recognized as areas of carbon transformation, with eroded particulate organic carbon processed to dissolved organic carbon and CO2. Existing studies indicate biodegradation and photodegradation as key processes controlling the transformation of organic carbon in fluvial systems, with initial concentrations of dissolved organic carbon (DOC) identified as a control on the rate of carbon mineralization. This study manipulates temperature and incident light intensity to investigate carbon mineralization rates in laboratory simulations of peatland sediment transport into fluvial systems. By directly measuring gaseous CO2 emissions from sampled stream water, the relationship of temperature and light intensity with carbon efflux is identified. In simulations where sediment (as particulate organic matter, POM) is absent, temperature is consistently the dominant factor influencing carbon efflux rates. This influence is independent of the initial DOC concentration of the water sample. In simulations where POM was added, representing a peatland river receiving eroded terrestrial sediment, initial DOC concentration predicts 79% of the variation in total gaseous carbon efflux whereas temperature and light intensity predict 12% and 3%, respectively. When sampled stream water's mineralization rates in the presence of added POM are analysed independently, removing DOC as a model variable, the dominant variable affecting CO2 efflux is opposite for each sample. This study presents novel data suggesting peatland erosion introduces further complexity to dynamic stream systems where rates of carbon transformation processes and the influence of specific environmental variables are interdependent. Anthropogenic climate change is identified as a leading risk factor perpetuating peatland erosion; therefore, understanding the fate of terrestrial sediment in rivers and further quantifying the benefits of protecting peatland soils will be of increasing importance to carbon budgeting and ecosystem function studies.  相似文献   

17.
Two soil CO2 efflux surveys were carried out in September 1999 and June 2002 to study the spatial distribution of diffuse CO2 degassing and estimate the total CO2 output from Showa-Shinzan volcanic dome, Japan. Seventy-six and 81 measurements of CO2 efflux were performed in 1999 and 2002, respectively, covering most of Showa-Shinzan volcano. Soil CO2 efflux data showed a wide range of values up to 552 g m-2 d-1. Carbon isotope signatures of the soil CO2 ranged from -0.9‰ to -30.9‰, suggesting a mixing between different carbon reservoirs. Most of the study area showed CO2 efflux background values during the 1999 and 2002 surveys (B = 8.2 and 4.4 g m-2 d-1, respectively). The spatial distribution of CO2 efflux anomalies for both surveys showed a good correlation with the soil temperature, indicating a similar origin for the extensive soil degassing generated by condensation processes and fluids discharged by the fumarolic system of Showa-Shinzan. The total diffuse CO2 output of Showa-Shinzan was estimated to be about 14.0–15.6 t d-1 of CO2 for an area of 0.53 km2.  相似文献   

18.
In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient-rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (235 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt-sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed-out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Soil piping is a widespread land degradation process that may lead to gully formation. However, the processes involved in sediment detachment from soil pipe walls have not been well studied, although their recognition is a crucial step to protect soils from piping erosion. This study aims to recognize the factors affecting cohesion and to identify the mechanisms which are likely to be responsible for the disintegration of soil. The study has been conducted in mid-altitude mountains under a temperate climate (the Bieszczady Mountains, the Carpathians, SE Poland). The research was based on the detailed field and laboratory analyses of morphology, and the physical and chemical properties of soil profiles with and without soil pipes. Moreover, experiments with flooding the undisturbed soil samples using different solutions (deionized water, ammonium oxalate, dithionate citrate, 35% hydrochloric acid and 30% hydrogen peroxide) were conducted in order to check the role of air slaking, the removal of soil organic carbon (SOC), and Fe and Al oxides on sediment detachment. The obtained results have confirmed that soil pipes develop in quite cohesive soils (silt loams), which allow the formation and maintenance of pipes with a diameter up to 30 cm. Soil cohesion, and thus susceptibility to piping, are impacted by the content of major oxides, soil particle size distribution, biological activity and porosity. The tested soils affected by piping erosion have a lower content of Al2O3 and Fe2O3, and free Fe (Fe(DCB)), lower clay content, higher biological activity (more roots and animal burrows), higher porosity, and more and larger pores than the profile without soil pipes. The experiments have indicated that especially SOC along with Fe and Al oxides are an important cohesion source in the study area. This suggests that the removal of SOC, and Fe and Al oxides may weaken and disintegrate aggregates in soil pipes. Further study of soil leaching and tensile strength will broaden understanding of which chemical processes control where pipes will develop in other cohesive piping-prone soils. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Understanding natural soil redistribution processes is essential for measuring the anthropogenic impact on landscapes. Although meteoric beryllium-10 (10Be) has been used to determine erosion processes within the Pleistocene and Holocene, fewer studies have used the isotope to investigate the transport and accumulation of the resulting sediment. Here we use meteoric 10Be in hilltop and valley site soil profiles to determine sediment erosion and deposition processes in the Christina River Basin (Pennsylvania, USA). The data indicate natural erosion rates of 14 to 21 mm 10−3 yr and soil ages of 26 000 to 57 000 years in hilltop sites. Furthermore, valley sites indicate an alteration in sediment supply due to climate change (from the Pleistocene to the Holocene) within the last 60 000 years and sediment deposition of at least 0.5–2 m during the Wisconsinan glaciation. The change in soil erosion rate was most likely induced by changes in geomorphic processes; probably solifluction and slope wash during the cold period, when ice advanced into the mid latitudes of North America. This study shows the value of using meteoric 10Be to determine sediment accumulation within the Quaternary and quantifies major soil redistribution occurred under natural conditions in this region. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号