首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow magnitude and timing from hydroelectric dams in the Snake River Basin of the Pacific north‐western US is managed in part for the benefit of salmon. The objective of this research was to evaluate the effects of Hells Canyon Dam discharge operations on hydrologic exchange flows between the river and riverbed in Snake River fall Chinook salmon spawning areas. Interactions between river water and pore water within the upper 1 m of the riverbed were quantified through the use of self‐contained temperature and water level data loggers suspended inside of piezometers. The data were recorded at 20 min intervals over a period of 200 days when the mean daily discharge was 218–605 m3 s?1, with hourly stage changes as large as 1·9 m. Differences in head pressure between the river and riverbed were small, often within ± 2 cm. Measured temperature gradients in the riverbed indicated significant interactions between the surface and subsurface water. At the majority of sites, neither hydraulic nor temperature gradients were significantly affected by either short‐ or long‐term changes in discharge operations from Hells Canyon Dam. Only 2 of 14 study sites exhibited acute flux reversals between the river and riverbed resulting from short‐term, large magnitude changes in discharge. The findings suggest that local scale measurements may not be wholly explanatory of the hydrological exchange between the river and riverbed. The processes controlling surface water exchange at the study sites are likely to be bedform‐induced advective pumping, turbulence at the riverbed surface, and large‐scale hydraulic gradients along the longitudinal profile of the riverbed. By incorporating the knowledge of hydrological exchange processes into water management planning, regional agencies will be better prepared to manage the limited water resources among competing priorities that include salmon recovery, flood control, irrigation supply, hydropower production, and recreation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
It is widely recognized that high supplies of fine sediment, largely sand, can negatively impact the aquatic habitat quality of gravel‐bed rivers, but effects of the style of input (chronic vs. pulsed) have not been examined quantitatively. We hypothesize that a continuous (i.e. chronic) supply of sand will be more detrimental to the quality of aquatic habitat than an instantaneous sand pulse equal to the integrated volume of the chronic supply. We investigate this issue by applying a two‐dimensional numerical model to a 1 km long reach of prime salmonid spawning habitat in central Idaho. Results show that in both supply scenarios, sand moves through the study reach as bed load, and that both the movement and depth of sand on the streambed mirrors the hydrograph of this snowmelt‐dominated river. Predictions indicate greater and more persistent mortality of salmonid embryos under chronic supplies than pulse inputs, supporting our hypothesis. However, predicted mortality varies both with salmonid species and location of spawning. We found that the greatest impacts occur closer to the location of the sand input under both supply scenarios. Results also suggest that reach‐scale morphology may modulate the impact of sand loads, and that under conditions of high sand loading climate‐related increases in flow magnitude could increase embryo mortality through sand deposition, rather than streambed scour. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The presence of ?ne sediment in river gravels is widely recognized as being detrimental to salmonid habitat quality. In order to facilitate quanti?cation of sand presence at larger scales, this paper presents an application of image processing allowing for rapid and accurate assessments of super?cial sand presence in dry exposed ?uvial gravels. Images for the process are acquired with a 35 mm SLR ?lm camera and then scanned with a desktop scanner. Texture‐based segmentation is then applied to differentiate between sand and clast areas. Results show that the method is accurate and therefore it offers an alternative to bulk sampling in cases where rapid assessments of sand presence are required. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Channel bifurcation is a key element in braided rivers, determining the water and sediment distribution and hence controlling the morphological evolution. Recent theoretical and experimental findings, as well as field observations, showed that bifurcations in gravel‐bed braided rivers are often asymmetrical and highly unstable. In this paper field data are presented on a bifurcation in the Tagliamento River, northeast Italy. The planform configuration of the bifurcation and its temporal evolution was monitored by an automatic digital camera during a series of seven floods with different magnitudes. This remote sensing technique allowed a high temporal resolution (pictures were acquired every hour) that was proved to be essential in a highly dynamic system as the one considered here. Digitized maps of the channels provided information on the location of the bifurcation, the width of the anabranches, the angle between them, along with the occurrence and migration of sediment bars. Data were acquired at two different water levels, giving the possibility to compare low and high flow conditions. The monitored bifurcation is largely unstable and shows sudden changes in the water distribution, mainly driven by the bar migrating in the upstream channel and entering the distributaries. A relationship between width asymmetry and flood magnitude was observed, confirming previous analyses. Moreover, recent theoretical findings were applied, in order to test the possibility to estimate general trends in bifurcation evolution. The analysis pointed out the relevance of a correct assessment of the characteristic temporal scales, as the bifurcation evolves on a timescale similar to that of bar migration and flood duration. Understanding the interactions between these processes is therefore crucial in order to increase the ability to model and predict the morphological evolution of a braided network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel‐bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel‐bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately one half kilometer of the former channel. The abandonment was rapid (probably within a few hours), leaving the bed texture essentially frozen in place at the peak of the flood. All locations sampled prior to the flood were resampled following the stream abandonment. In response to the high flow, the surface median grain size (D50s) coarsened slightly in the outer part of the bend while remaining nearly constant along the inner part of the bend, resulting in an overall increase from 18 to 21 mm for the study reach. Thus, the coarse bed surface texture persisted despite shear stresses throughout the bend that were well above the critical entrainment value. This may be explained because the response of the bed texture to increases in flow strength depends primarily upon the continued availability of the various grain size percentiles in the supply, which in this case was essentially unlimited for all sizes present in the channel. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Bankfull discharge is identified as an important parameter for studying river morphology, sediment motion, flood dynamics and their ecological impacts. In practice, the determination of this discharge and its hydrological characteristics is not easy, and a choice has to be made between several existing methods. To evaluate the impact of the choice of methods, five bankfull elevation definitions and four hydrological characterizations (determination of duration and frequency of exceedance applied to instantaneous or mean daily data) were compared on 16 gravel‐bed river reaches located in France (the catchment sizes vary from 10 km2 to 1700 km2). The consistency of bankfull discharge estimated at reach scale and the hydraulic significance of the five elevation definitions were examined. The morphological definitions (Bank Inflection, Top of Bank) were found more relevant than the definitions based on a geometric criterion. The duration of exceedance was preferred to recurrence intervals (partial duration series approach) because it is not limited by the independency of flood events, especially for low discharges like those associated with the Bank Inflection definition. On average, the impacts of the choice of methods were very important for the bankfull discharge magnitude (factor of 1·6 between Bank Inflection and Top of Bank) and duration of exceedance or frequency (respectively a factor 1·8 and 1·9 between mean daily and instantaneous discharge data). The choice of one combination of methods rather than another can significantly modify the conclusions of a comparative analysis in terms of bankfull discharge magnitude and its hydrological characteristics, so that one must be cautious when comparing results from different studies that use different methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Two controlled flow events were generated by releasing water from a reservoir into the Olewiger Bach, located near Trier, Germany. This controlled release of near bank‐full flows allowed an investigation of the fine sediment (<63 µm) mobilized from channel storage. Both a winter (November) and a summer (June) release event were generated, each having very different antecedent flow conditions. The characteristics of the release hydrographs and the associated sediment transport indicated a reverse hysteresis with more mass, but smaller grain sizes, moving on the falling limb. Fine sediment stored to a depth of 10 cm in the gravels decreased following the release events, indicating the dynamic nature and importance of channel‐stored sediments as source materials during high flow events. Sediment traps, filled with clean natural gravel, were buried in riffles before the release of the reservoir water and the total mass of fine sediment collected by the traps was measured following the events. Twice the mass of fine sediment was retained by the gravel traps compared with the natural gravels, which may be due to their altered porosity. Although the amount of fine sediment collected by the traps was not significantly related to measures of gravel structure, it was found to be significantly correlated to measures of local flow velocity and Froude number. A portion of the traps were fitted with lids to restrict surface exchange of water and sediment. These collected the highest amounts of event‐mobilized sediments, indicating that inter‐gravel lateral flows, not just surface infiltration of sediments, are important in replenishing and redistributing the channel‐stored fines. These findings regarding the magnitude and direction of fine sediment movement in gravel beds are significant in both a geomorphic and a biological context. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Bank strength due to vegetation dominates the geometry of small stream channels, but has virtually no effect on the geometry of larger ones. The dependence of bank strength on channel scale affects the form of downstream hydraulic geometry relations and the meandering‐braiding threshold. It is also associated with a lateral migration threshold discharge, below which channels do not migrate appreciably across their floodplains. A rational regime model is used to explore these scale effects: it parameterizes vegetation‐related bank strength using a dimensionless effective cohesion, Cr*. The scale effects are explored primarily using an alluvial state space defined by the dimensionless formative discharge, Q*, and channel slope, S, which is analogous to the Q–S diagrams originally used to explore meandering‐braiding thresholds. The analyses show that the effect of vegetation on both downstream hydraulic geometry and the meandering‐braiding threshold is strongest for the smallest streams in a watershed, but that the effect disappears for Q* > 106. The analysis of the migration threshold suggests that the critical discharge ranges from about 5 m3/s to 50 m3/s, depending on the characteristic rooting depth for the vegetation. The analysis also suggests that, where fires frequently affect riparian forests, channels may alternate between laterally stable gravel plane‐bed channels and laterally active riffle‐pool channels. These channels likely do not exhibit the classic dynamic equilibrium associated with alluvial streams, but instead exhibit a cyclical morphologic evolution, oscillating between laterally stable and laterally unstable end‐members with a frequency determined by the forest fire recurrence interval. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A comprehensive monitoring programme focusing on bedload transport behaviour was conducted at a large gravel‐bed river. Innovative monitoring strategies were developed during five years of preconstruction observations accompanying a restoration project. A bedload basket sampler was used to perform 55 cross‐sectional measurements, which cover the entire water discharge spectrum from a 200‐year flood event in 2013 to a rare low flow event. The monitoring activities provide essential knowledge regarding bedload transport processes in large rivers. We have identified the initiation of motion under low flow conditions and a decrease in the rate of bedload discharge with increasing water discharge around bankfull conditions. Bedload flux strongly increases again during high flood events when the entire inundation area is flooded. No bedload hysteresis was observed. The effective discharge for bedload transport was determined to be near mean flow conditions, which is therefore at a lower flow discharge than expected. A numerical sediment transport model was able to reproduce the measured sediment transport patterns. The unique dataset enables the characterisation of bedload transport patterns in a large and regulated gravel‐bed river, evaluation of modern river engineering measures on the Danube, and, as a pilot project has recently been under construction, is able to address ongoing river bed incision, unsatisfactory ecological conditions for the adjacent national park and insufficient water depths for inland navigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
We explore the link between channel‐bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain‐size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport‐limited regime using a two grain‐size mixture of sand and gravel. Downstream ?ning through selective particle erosion is produced in equilibrium. As the channel‐bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel‐bed texture, and a sand‐dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel‐ or sand‐grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ?uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ?ning rules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A six‐year monitoring programme characterized the migration/dispersion patterns of sediment slugs generated following typhoon‐induced disturbances in 1993 and 1997 along a single‐thread gravel‐bed stream, Oyabu Creek, on Kyushu Island, Japan. This laterally con?ned creek comprises rif?e–pool sequences with intervening bedrock outcrops. The passage of sediment pulses associated with sediment slug processes re?ected, and was controlled by, the rif?e–pool structures which provided channel bed roughness, the volume of sediment stored along valley ?oors, and the distribution of bedrock outcrops. Changes to bed material size following major sediment inputs during the disturbance events also exerted an in?uence on subsequent sediment slug processes. The sequence of rainfall events, together with changes to channel bed structure, induced different phases in the sediment slug processes. The capacity of a reach to store or trap sediment, as recorded by the longitudinal structure of the channel, varied during these differing phases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an evaluation of the feasibility and the reliability of a visual characterization technique for gravel–cobble river bed surface substrate. Based on principal axis regressions, using phi scale (ϕ), comparisons of visual estimation and grid sampling techniques show that useful predictive relations (R2 = 0·78–0·88) exist between visual estimates of the surface d16, d50 and d84 and estimates obtained for the same percentiles with the grid sampling technique. Comparisons of visual estimation and the surface‐bulk sampling technique also indicate a predictive relation (R2 = 0·70) between the d50 of the two methods. Trained operators can visually estimate gravel–cobble bed surface d16 to uncertainties of 41 per cent, d50 to 15 per cent and d84 to 11 per cent (for example, there is a 5·5 mm error on a d84 size of 50 mm). Furthermore, evidence shows that if operators are properly trained, a calibration relation for each percentile can be applied independently of operators. This visual characterization allows effective detailed mapping of spatial patterns in substrate size distribution along extensive reaches of gravel‐bed rivers. The technique can be very useful in creating terrain models for various geomorphological, hydrological and biological applications such as the determination of entrainment thresholds, hydraulic roughness and substrate suitability for benthic insects or salmonid habitat. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Sediment transport in the Erlenbach, a small stream with step‐pool morphology in the canton of Schwyz, Switzerland, has been monitored for more than 20 years. During this time three exceptional events (events with high sediment yield and long return times that have a large effect on channel morphology) have impacted the stream and partly or completely rearranged the existing step‐pool morphology. In the aftermath of the events, sediment transport rates at a given discharge and total sediment yield remained elevated for about a year or longer. For the last event, dated on the 20 June 2007, observations of boulder mobility and step destruction were used to interpret channel stability. Boulders with median diameters of up to 135 cm and estimated weights of more than 2·5 tons have moved during the 2007 event. Using hydraulic observations and shear stress calculations boulders up to 65 cm in diameter were predicted to have been fully mobile in peak conditions, even if form resistance and increased critical stresses needed for the initiation of motion in steep streams were taken into account. For two of the events, estimated peak shear stresses at the bed exceeded 1000 Pa, calculated both from observations of the flow hydraulics and from boulder mobility. This suggests that highly energetic flows occur relatively frequently in small, steep streams and that large boulders can be transported by fluvial processes in such streams. The observations have potential significance for hazard risk mitigation, stream engineering and restoration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
There is a paucity of data and insight in the mechanisms of, and controls on flow separation and recirculation at natural sharply‐curved river bends. Herein we report on successful laboratory experiments that elucidate flow structure in one constant‐width bend and a second bend with an outer‐bank widening. The experiments were performed with both a flat immobile gravel bed and mobile sand bed with dominant bedload sediment transport. In the constant‐width bend with immobile bed, a zone of mainly horizontal flow separation (vertical rotational axis) formed at the inner bank that did not contain detectable flow recirculation, and an outer‐bank cell of secondary flow with streamwise oriented rotational axis. Surprisingly, the bend with widening at the outer bank and immobile bed did not lead to a transverse expansion of the flow. Rather, flow in the outer‐bank widening weakly recirculated around a vertical axis and hardly interacted with the inner part of the bend, which behaved as a constant‐width bend. In the mobile bed experiment, downstream of the bend apex a pronounced depositional bar developed at the inside of the bend and pronounced scour occurred at the outside. Moreover the deformed bed promoted flow separation over the bar, including return currents. In the constant‐width bend, the topographic steering impeded the generation of an outer‐bank cell of secondary flow. In the bend with outer‐bank widening, the topographic steering induced an outward expansion of the flow, whereby the major part of the discharge was conveyed in the central part of the widening section. Flow in the outer‐bank widening was highly three dimensional and included return currents near the bottom. In conclusion, the experiments elucidated three distinct processes of flow separation common in sharp bends: flow separation at the inner bank, an outer‐bank cell of secondary flow, and flow separation and recirculation in an outer‐bank widening. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号