首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entrainment of underlying bed sediment by a debris flow can significantly increase the debris‐flow magnitude. To study this phenomenon, a theoretical approach to assessing bed‐sediment entrainment is presented. The approach is based on a static approximation that bed‐sediment entrainment occurs when the shearing stress of the flow is sufficiently high to overcome the basal resistance of the bed sediment. In order to delineate erodible zones in a channel, we analyze the critical condition of this static equilibrium model, and subsequently propose a new concept of a critical line to detect the entrainment reaches in a channel. Considering the spatial and temporal uncertainties of the input parameter, the approach is further incorporated within a Monte Carlo method, and the distribution of entrainment zones and post‐entrainment volumes can be analyzed. This approach is illustrated by back‐analysis of the 2010 Yohutagawa debris‐flow event, Japan. Results from 10 000 trials of Monte Carlo simulation are compared with the in situ surveys. It is shown that the present approach can be satisfactorily used to delineate erodible zones and estimate possible entrainment volume of the event. Discussion regarding the sensitivities and limitations of the approach concludes the paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Identification of debris‐flow hazard areas necessitates the knowledge of the flow thickness and the runout distance. Both have been investigated using a numerical runout model. On the Faucon stream (South French Alps), representative of clay‐shale basins, results of various rheological tests and numerical experiments are presented and discussed. The calibration of the model was undertaken using the results of both geomorphological surveys and sedimentological analyses. Rheological tests using either a parallel‐plate rheometer, a coaxial rheometer, slump tests, and an inclined plane were carried out on several samples. Results have shown that the flow behaviour could be described by an Herschel‐Bulkley constitutive equation. The rheological responses of several natural suspensions collected from surficial deposits (sandstones, moraines, weathered black marls) were also investigated. In order to model the runout of the flow, the model BING was used. The model describes well the influence of each type of sediment on the behaviour (runout distance, deposit thickness) of the flow, although the velocities were significantly overestimated. Different risk scenarios are tested and discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Coupling morphological, sedimentological, and rheological studies to numerical simulations is of primary interest in defining debris‐flow hazard on alluvial fans. In particular, numerical runout models must be carefully calibrated by morphological observations. This is particularly true in clay‐shale basins where hillslopes can provide a large quantity of poorly sorted solid materials to the torrent, and thus change both the mechanics of the debris flow and its runout distance. In this context, a study has been completed on the Faucon stream (southeastern French Alps), with the objectives of (1) defining morphological and sedimentological characteristics of torrential watersheds located in clay‐shales, and (2) evaluating through a case study the scouring potential of debris flows affecting a clay‐shale basin. Morphological surveys, grain‐size distributions and petrographic analyses of the debris‐flow deposits demonstrate the granular character of the flow during the first hectometre, and its muddy character from there to its terminus on the debris fan. These observations and laboratory tests suggest that the contributing areas along the channel have supplied the bulk of the flow material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This study reports the results of a large woody debris (LWD) removal experiment in a meander bend along a low‐energy stream in the Midwestern United States. The LWD obstacle was located in the center of the channel at the bend exit and consisted of a mature tree with an intact soil‐covered root wad and a large accumulation of logs, branches and pieces of lumber on top of and adjacent to the main tree. The results indicate that the LWD obstruction influenced 3D flow structure in this bend at all flow stages. The main effect of LWD is to dramatically decelerate flow throughout the majority of the bend, while locally accelerating flow where it passes through the narrow chute at the downstream end of the LWD obstruction. Results from the LWD removal experiment indicate that patterns of three‐dimensional flow structure in meander bends are sensitive to complete removal of LWD. After the removal of LWD from the bend, both downstream and secondary velocities increased and, though still weak, secondary flow intensified. Large, relatively stable, obstructions that span a significant portion of the channel may act as natural dams, effectively ponding water upstream of the LWD, thereby producing substantial convective deceleration of the flow. This research is the first to document three‐dimensional flow structure before and after a controlled removal of LWD from a meander bend. Studies of the type reported here represent a first step toward determining the ensemble of process interactions between LWD and bend dynamics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
On 29 August, 2003, an intense convective storm system affected the Fella River basin, in the eastern Italian Alps, producing rainfall peaks of approximately 390 mm in 12 h. The storm triggered an unusually large debris flow in the ungauged Rio Cucco basin (0·65 km2), with a volume of approximately 78 000 m3. The analysis of the time evolution of the rainstorm over the basin has been based on rainfall estimates from radar observations and data recorded by a raingauge network. Detailed geomorphological field surveys, carried out both before and after the flood of August 2003, and the application of a distributed hydrological model have enabled assessment of flood response, estimation of erosion volumes and sediment supply to the channel network. The accounts of two eyewitnesses have provided useful elements for reconstructing the time evolution and the flow processes involved in the event. Liquid peak discharge estimates cluster around 20 m3 s?1 km?2, placing this event on the flood envelope curve for the eastern Italian Alps. The hydrological analysis has shown that the major controls of the flood response were the exceptional cumulated rainfall amount, required to exceed the large initial losses, and the large rainfall intensities at hourly temporal scales, required to generate high flood response at the considered basin scale. Observations on the deposits accumulated on the alluvial fan indicate that, although the dominant flow process was a debris flow, sheetflood also contributed to fan aggradation and fluvial reworking had an important role in winnowing debris‐flow lobes and redistributing sediment on the fan surface. This points out to the large discharge values during the recession phase of the flood, implying an important role for subsurface flow on runoff generation of this extreme flash flood event. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire‐related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder‐sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris‐flow producing and flood‐producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris‐flow responses were produced without the presence of water‐repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris‐flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

8.
Burned slopes are susceptible to runoff-generated debris flows in the years following wildfire due to reductions in vegetation cover and soil infiltration capacity. Debris flows can pose serious threats to downstream communities, so quantifying variations in flow properties along debris-flow runout paths is needed to improve both conceptual and quantitative models of debris-flow behaviour to help anticipate and mitigate the risk associated with these events. Changes in flow properties along the runout paths of the runoff-generated debris flows that follow fire may be particularly dramatic, since they initiate when a water-dominated flow rapidly entrains sediment and later transition back to a water-dominated flow once they reach greater drainage areas and lower slopes. Here, we study the properties of a debris flow that initiated 1 month following the 2022 Pipeline Fire in northern Arizona, USA. We categorized flow type into two classes, granular debris flow and muddy debris flow, along the 7-km runout path and examined how flow properties varied between the phases. Changes in channel gradient and confinement likely facilitated the transition between the flow phases, which were characterized by significant differences in maximum clast size, but similar clay content and fine fractions. We also found that the volume and runout distance of the debris flow were 28 and six times greater, respectively, than that of a debris flow that initiated in the same watershed following a fire 12 years earlier. We attribute these differences to the combined effects of two high-severity fires, suggesting that consideration of recent fire history could improve post-fire debris-flow hazard assessments. Results of this study provide quantitative constraints on changes in post-fire debris-flow properties along a runout path. Data collected in this study add to a small number of debris-flow inundation datasets that can be used to test runout models in post-fire settings.  相似文献   

9.
The characteristics of two recent (AD 1994) debris flows in upper Leirdalen, Jotunheimen, Norway, suggest deposition controlled by fluid loss into the underlying, highly permeable, coarse talus. The evidence comprises: (1) drainage holes (sieveholes) up to 44 cm wide and 125 cm deep in the debris‐flow channel floors, which remained open throughout the debris‐flow event; (2) marked channel narrowing, with reduced cross‐sectional areas and termination of the debris flows in flat‐topped, clast‐dominated lobes within a relatively short distance after crossing the junction between impermeable and permeable substrate; (3) the presence of fines deposited in the sieveholes demonstrating the passage of transported matrix; and (4) the absence of substantial lateral drainage through (or dissection of) the levées or the terminal lobes. The term ‘sieve deposition’ is considered particularly well suited to this process involving drainage through the substrate, which is likely to be most effective where debris flows traverse coarse talus either for the first time or only infrequently. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The debris deposits at the bottom of very steep natural channels and streams in high mountain areas can be mobilized by runoff, triggering a water–sediment mixture flow known as debris flow. The routing of debris flow through human settlements can cause damage to civil structures and loss of human lives. The prediction of such an event, or the runoff discharge that triggers it, assumes an interest in risk analyses and the planning of defence measures. The object of this study is to find a method to determine the critical runoff value that triggers debris flow as a result of channel‐bed failure. Historical and rainfall data on 30 debris flows that occurred in six watersheds of the Dolomites (north‐eastern Italian Alps) were collected from different sources. Field investigations at the six sites, together with the hydrologic response to the rainfalls that triggered the events, were performed to obtain a realistic scenario of the formation of the debris flow there occurred. Field observations include a survey along the channel of the triggering reach of debris flow, with measurements of the channel slope and cross‐section and sampling of debris deposits for grain size distribution. Simulated runoff discharge values based on the rainfall recorded by pluviometers were then compared with values obtained through experimental criteria on the initiation and formation of debris flow by bed failure. The results are discussed to provide a plausible physical‐based method for the prediction of the triggering of debris flow by channel‐bed failure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Debris flows generated from landslides are common processes and represent a severe hazard in mountain regions due to their high mobility and impact energy. We investigate the dynamics and the rheological properties of a 90 000 m3 debris‐flow event triggered by a rapid regressive landslide with high water content. Field evidence revealed a maximum flow depth of 7–8 m, with an estimated peak discharge of 350–400 m3 s?1. Depositional evidence and grain‐size distribution of the debris pose the debris flow in an intermediate condition between the fluid‐mud and grain‐flow behaviour. The debris‐flow material has silt–clay content up to 15 per cent. The rheological behaviour of the finer matrix was directly assessed with the ball measuring system. The measurements, performed on two samples at 45–63 per cent in sediment concentration by volume, gave values of 3·5–577 Pa for the yield strength, and 0·6–27·9 Pa s for the viscosity. Based on field evidence, we have empirically estimated the yield strength and viscosity ranging between 4000 ± 200 Pa, and 108–134 Pa s, respectively. We used the Flo‐2D code to replicate the debris‐flow event. We applied the model with rheological properties estimated by means of direct measurements and back‐analyses. The results of these models show that the rheological behaviour of a debris‐flow mass containing coarse clasts can not be assessed solely on the contribution of the finer matrix and thus neglecting the effects of direct grain contacts. For debris flows composed by a significant number of coarse clasts a back‐analysis estimation of the rheological parameters is necessary to replicate satisfactorily the depositional extent of debris flows. In these cases, the back‐estimated coefficients do not adequately describe the rheological properties of the debris flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Dekui Yuan  Binliang Lin 《水文研究》2009,23(19):2804-2817
Beach water table fluctuations have an impact on the transport of beach sediments and the exchange of solute and mass between coastal aquifer and nearby water bodies. Details are given of the refinement of a dynamically integrated ground‐ and surface‐water model, and its application to study ground‐ and surface‐water interactions in coastal regions. The depth‐integrated shallow‐water equations are used to represent the surface‐water flow, and the extended Darcy's equation is used to represent the groundwater flow, with a hydrostatic pressure distribution being assumed to apply for both these two types of flows. At the intertidal region, the model has two layers, with the surface‐water layer being located on the top of the groundwater layer. The governing equations for these two types of flows are discretized in a similar manner and they are combined to give one set of linear algebraic equations that can be solved efficiently. The model is used to predict water level distributions across sloping beaches, where the water table in the aquifer may or may not decouple from the free water surface. Five cases are used to test the model for simulating beach water table fluctuations induced by tides, with the model predictions being compared with existing analytical solutions and laboratory and field data published in the literature. The numerical model results show that the integrated model is capable of simulating the combined ground‐ and surface‐water flows in coastal areas. Detailed analysis is undertaken to investigate the capability of the model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The geomorphological characteristics of small debris flows in a maritime sub‐Antarctic environment are described. The morphological and sedimentological characteristics of the debris flows are comparable to debris flows documented for other parts of the world; their initiation appears closely linked to the unusual environment in which they are found. Sediment supply is generated by diurnal frost heave of loamy sediment associated with Azorella selago. The debris flows are triggered by sediment mobilization upon saturation of the frost‐heaved surface gravel and overland flow over the low‐permeability and frost‐susceptible slope materials. Morphological effects of the flows are short‐lived due to obliteration by subsequent frost heave activity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The paper focusses on connectivity in the context of infiltration‐excess overland flow and its integrated response as slope‐base overland flow hydrographs. Overland flow is simulated on a sloping surface with some minor topographic expression and spatially differing infiltration rates. In each cell of a 128 × 128 grid, water from upslope is combined with incident rainfall to generate local overland flow, which is stochastically routed downslope, partitioning the flow between downslope neighbours. Simulations show the evolution of connectivity during simple storms. As a first approximation, total storm runoff is similar everywhere, discharge increasing proportionally with drainage area. Moderate differences in plan topography appear to have only a second‐order impact on hydrograph form and runoff amount. Total storm response is expressed as total runoff, runoff coefficient or total volume infiltrated; each plotted against total storm rainfall, and allowing variations in average gradient, overland flow roughness, infiltration rate and storm duration. A one‐parameter algebraic expression is proposed that fits simulation results for total runoff, has appropriate asymptotic behaviour and responds rationally to the variables tested. Slope length is seen to influence connectivity, expressed as a scale distance that increases with storm magnitude and can be explicitly incorporated into the expression to indicate runoff response to simple events as a function of storm size, storm duration, slope length and gradient. The model has also been applied to a 10‐year rainfall record, using both hourly and daily time steps, and the implications explored for coarser scale models. Initial trails incorporating erosion continuously update topography and suggest that successive storms produce an initial increase in erosion as rilling develops, while runoff totals are only slightly modified. Other factors not yet considered include the dynamics of soil crusting and vegetation growth. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Debris flows are gravity-driven mass movements that are common natural hazards in mountain regions worldwide. Previous work has shown that measurements of ground vibrations are capable of detecting the timing, speed, and location of debris flows. A remaining question is to what extent additional flow properties, such as grain-size distribution and flow depth can be inferred reliably from seismic data. Here, we experimentally explore the relation of seismic vibrations and normal-force fluctuations with debris-flow composition and dynamics. We use a 5.4 m long and 0.3 m wide channel inclined at 20°, equipped with a geophone plate and force plate. We show that seismic vibrations and normal-force fluctuations induced by debris flows are strongly correlated, and that both are affected by debris-flow composition. We find that the effects of the large-particle distribution on seismic vibrations and normal-force fluctuations are substantially more pronounced than the effects of water fraction, clay fraction, and flow volume, especially when normalized by flow depth. We further show that for flows with similar coarse-particle distributions seismic vibrations and normal-force fluctuations can be reasonably well related to flow depth, even if total flow volume, water fraction, and the size distribution of fines varies. Our experimental results shed light on how changes in large-particle, clay, and water fractions affect the seismic and force-fluctuation signatures of debris flows, and provide important guidelines for their interpretation.  相似文献   

17.
The effect of the small fraction of clays on the rheological behaviour of alpine debris flow is poorly understood. This is partly due to the complexity of the debris flow mineralogy and the broad particle size distribution. This study has investigated this issue by simulating an alpine debris flow with a mixture of well characterized fractions and then varying the clay fraction composition. Four samples were tested, ranging from a clay fraction made up of only kaolinite (1:1 type clay) to samples where 80 per cent of the kaolinite is replaced by bedeillite (a 2:1 type clay similar to smectite). Changing the content of 2:1 type clay has a strong influence on the behaviour of the whole material, despite its low weight fraction of around 2 per cent. The tests carried out on these reconstituted materials were compared with the results obtained for natural debris flow materials and showed some common trends: in particular, the rheological parameters for materials with and without 2:1 clays with respect to yield stress as a function of solid content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The main purpose of this study is to develop a new type of artificial neural network based model for constructing a debris flow warning system. The Chen‐Eu‐Lan river basin, which is located in Central Taiwan, is assigned as the study area. The creek is one of the most well‐known debris flow areas where several damaging debris flows have been reported in the last two decades. The hydrological and geological data, which might have great influence on the occurrence of debris flows, are first collected and analysed, then, the shared near neighbours neural network (SNN + NN) is presented to construct the debris flow warning system for the watershed. SNN is an unsupervised learning method that has the advantage of dealing with non‐globular clusters, besides presenting computational efficiency. By using SNN, the compiled hydro‐geological data set can easily and meaningfully be clustered into several categories. These categories can then be identified as ‘occurrence’ or ‘no‐occurrence’ of debris flows. To improve the effectiveness of the debris flow warning system, a neural network framework is designed to connect all the clusters produced by the SNN method, whereas the connected weights of the network are adjusted through a supervised learning method. This framework is used and its applicability and practicability for debris flow warning are investigated. The results demonstrate that the proposed SNN + NN model is an efficient and accurate tool for the development of a debris flow warning system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Wind erosion is a key component of land degradation in vulnerable dryland regions. Despite a wealth of studies investigating the impact of vegetation and windbreaks on windflow in controlled wind‐tunnel and modelling environments, there is still a paucity of empirical field data for accurately parameterizing the effect of vegetation in wind and sediment transport models. The aim of this study is to present a general parameterization of wind flow recovery in the lee of typical dryland vegetation elements (grass clumps and shrubs), based on their height (h ) and optical porosity (θ ). Spatial variations in mean wind velocity around eight isolated vegetation elements in Namibia (three grass clumps and five shrubs) were recorded at 0.30 m height, using a combination of sonic and cup anemometry sampled at a temporal frequency of 10 seconds. Wind flow recovery in the lee of the elements was parameterized in an exponential form, . The best‐fit parameters derived from the field data were u 0 = u ref(0.0146θ ? 0.4076) and b = 0.0105θ + 0.1627 . By comparing this parameterization to existing models, it is shown that wind recovery curves derived from two‐dimensional wind fence experiments may not be suitable analogues for describing airflow around more complex, three‐dimensional forms. Field‐derived parameterizations such as the one presented here are a crucial step for connecting plant‐scale windflow behaviour to dryland bedform development at landscape scales. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号