首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bedload transport data from planebed and step‐pool reach types are used to determine grain size transport thresholds for selected upland streams in southeast Australia. Morphological differences between the reach types allow the effects of frictional losses from bedforms, microtopography and bed packing to be incorporated into the dimensionless critical shear stress value. Local sediment transport data are also included in a regime model and applied to mountain streams, to investigate whether empirical data improve the delineation of reach types on the basis of dimensionless discharge per unit width (q*) and dimensionless bedload transport (qb*). Instrumented planebed and step‐pool sites are not competent to transport surface median grains (D50s) at bankfull discharge (Qbf). Application of a locally parametrized entrainment equation to the full range of reach types in the study area indicates that the majority of cascades, cascade‐pools, step‐pools and planebeds are also not competent at Qbf and require a 10 year recurrence interval flood to mobilize their D50s. Consequently, the hydraulic parameters of the regime diagram, which assume equilibrium conditions at bankfull, are ill suited to these streams and provide a poor basis of channel delineation. Modifying the diagram to better reflect the dominant transported bedload size (equivalent to the D16 of surface sediment) made only slight improvements to reach delineation and had greatest effect on the morphologies with smaller surface grain sizes such as forced pool‐riffles and planebeds. Likewise, the Corey shape factor was incorporated into the regime diagram as an objective method for adjusting a base dimensionless critical shear stress (τ*c50b) to account for lithologically controlled grain shape on bed packing and entrainment. However, it too provided only minor adjustments to reach type delineation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Data from flume studies are used to develop a model for predicting bed‐load transport rates in rough turbulent two‐dimensional open‐channel flows moving well sorted non‐cohesive sediments over plane mobile beds. The object is not to predict transport rates in natural channel flows but rather to provide a standard against which measured bed‐load transport rates influenced by factors such as bed forms, bed armouring, or limited sediment availability may be compared in order to assess the impact of these factors on bed‐load transport rates. The model is based on a revised version of Bagnold's basic energy equation ibsb = ebω, where ib is the immersed bed‐load transport rate, ω is flow power per unit area, eb is the efficiency coefficient, and sb is the stress coefficient defined as the ratio of the tangential bed shear stress caused by grain collisions and fluid drag to the immersed weight of the bed load. Expressions are developed for sb and eb in terms of G, a normalized measure of sediment transport stage, and these expressions are substituted into the revised energy equation to obtain the bed‐load transport equation ib = ω G 3·4. This equation applies regardless of the mode of bed‐load transport (i.e. saltation or sheet flow) and reduces to ib = ω where G approaches 1 in the sheet‐flow regime. That ib = ω does not mean that all the available power is dissipated in transporting the bed load. Rather, it reflects the fact that ib is a transport rate that must be multiplied by sb to become a work rate before it can be compared with ω. It follows that the proportion of ω that is dissipated in the transport of bed load is ibsb/ω, which is approximately 0·6 when ib = ω. It is suggested that this remarkably high transport efficiency is achieved in sheet flow (1) because the ratio of grain‐to‐grain to grain‐to‐bed collisions increases with bed shear stress, and (2) because on average much more momentum is lost in a grain‐to‐bed collision than in a grain‐to‐grain one. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This study investigates trends in bed surface and substrate grain sizes in relation to reach‐scale hydraulics using data from more than 100 gravel‐bed stream reaches in Colorado and Utah. Collocated measurements of surface and substrate sediment, bankfull channel geometry and channel slope are used to examine relations between reach‐average shear stress and bed sediment grain size. Slopes at the study sites range from 0·0003 to 0·07; bankfull depths range from 0·2 to 5 m and bankfull widths range from 2 to 200 m. The data show that there is much less variation in the median grain size of the substrate, D50s, than there is in the median grain size of the surface, D50; the ratio of D50 to D50s thus decreases from about four in headwater reaches with high shear stress to less than two in downstream reaches with low shear stress. Similar trends are observed in an independent data set obtained from measurements in gravel‐bed streams in Idaho. A conceptual quantitative model is developed on the basis of these observations to track differences in bed load transport through an idealized stream system. The results of the transport model suggest that downstream trends in total bed load flux may vary appreciably, depending on the assumed relation between surface and substrate grain sizes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Storage–discharge curves are widely used in several hydrological applications concerning flow and solute transport in small catchments. This article analyzes the relation Q(S) (where Q is the discharge and S is the saturated storage in the hillslope), as a function of some simple structural parameters. The relation Q(S) is evaluated through two‐dimensional numerical simulations and makes use of dimensionless quantities. The method lies in between simple analytical approaches, like those based on the Boussinesq formulation, and more complex distributed models. After the numerical solution of the dimensionless Richards equation, simple analytical relations for Q(S) are determined in dimensionless form, as a function of a few relevant physical parameters. It was found that the storage–discharge curve can be well approximated by a power law function Q/(LKs) = a(S/(L2(? ? θr)))b, where L is the length of the hillslope, Ks the saturated conductivity, ? ? θr the effective porosity, and a, b two coefficients which mainly depend on the slope. The results confirm the validity of the widely used power law assumption for Q(S). Similar relations can be obtained by performing a standard recession curve analysis. Although simplified, the results obtained in the present work may serve as a preliminary tool for assessing the storage–discharge relation in hillslopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The mass and size distribution of grain entrainment per unit bed area may be measured by replacing a volume of the bed with tracer gravels and observing the mass difference before and after a transport event. This measure of spatial entrainment is relevant to any process involving size-selective exchange of sediment between transport and bed and may be directly used in calculations of sediment transport rate using an elementary relation for fractional transport components presented here. This relation provides a basis for evaluating tracer data collected by different methods and may be used to provide physical insight regarding the expected behaviour of tracer grains. The variation with grain size of total displacement length Lti depends on the degree of mobilization of the individual fractions on the bed surface: Lti is independent of Di for smaller, fully mobile sizes and decreases rapidly with Di for larger fractions in a state of partial transport (in which a portion of the surface grains remain immobile through the flow event). The boundary between fully and partially mobile grain sizes increases with flow strength. These inferences are supported by values of Lti calculated from flume experiments and provide a physical explanation for a summary relation between Lti and Di based on field data. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
Researchers have associated channel-forming flows with reach-average shear stresses close to the entrainment threshold for the surface D50 . We conducted experiments using a model of a generic steep, gravel–cobble stream to test this association. Our results suggest that channel-forming flows fully mobilize the D50 , and produce shear stresses close to the entrainment threshold for the largest grains in the bed. The channel dimensions were set by flows capable of mobilizing between 85% and 90% of the bed surface, which produced a brief period of lateral instability lasting about 1 h, followed by a prolonged period of relative stability during which modest adjustments occurred, but during which the reach-average hydraulics remained about the same. The adjustments during the unstable phase of the experiments are characterized by rapid bank erosion, extensive deposits on the channel bed and a restructuring of the major morphologic elements of the stream. The adjustments during the stable phase of the experiments involved barform migration and bed surface coarsening but did not appreciably modify the physical template established by the end of the unstable phase. The behaviour we observed is not consistent with the concept of a dynamic equilibrium associated with a formative flow that is just capable of entraining the bed surface D50 . Instead, it suggests that rapid adjustments occur once a stability threshold is exceeded, which creates a template that constrains channel activity until another event drives the system across the stability threshold, and re-sets the template. While we believe that it is probably too simplistic to associate a channel-forming discharge with the entrainment threshold for a single grain size, our results suggest that the D95 is a more logical choice than the D50 © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
Wind tunnel simulations of the effect of non-erodible roughness elements on sediment transport show that the flux ratio q/qs, shear velocity U*, and roughness density λ are co-dependent variables. Initially, the sediment flux is enhanced by kinetic energy retention in relatively elastic collisions that occur at the roughness element surfaces, but at the same time, the rising surface coverage of the immobile elements reduces the probability of grain ejection. A zone of strong shearing stress develops within 0·03 to 0·04 m of the rough bed because of a relative straightening of velocity profiles which are normally convex with saltation drag. This positive influence on fluid entrainment is opposed by declining shear stress partitioned to the sand bed. Similarly, because the free stream velocity Uf is fixed while U* increases, velocity at height z and particle momentum gain from the airstream decline, leading eventually to lower numbers of particles ejected on average at each impact. When the ratio of the element basal area to frontal area σ is approximately equal to 3·5, secondary flow effects appear to become significant, so that the dimensionless aerodynamic roughness parameter Z0/h and shear stress on the exposed sand bed Ts decrease. It is at this point that grain supply to the airstream and saltation drag appear to be significantly reduced, thereby intensifying the reduction in U*. The zone of strong fluid shear near the bed dissipates.  相似文献   

8.
Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power‐based classification and a physics‐based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and median bed particle size ranging over several orders of magnitude with various channel patterns and bar types, but no obvious eroding or aggrading tendency. Empirically a continuum is found for increasing specific stream power, here calculated with pattern‐independent variables: mean annual flood, valley gradient and channel width predicted with a hydraulic geometry relation. ‘Thresholds’, above which certain patterns emerge, were identified as a function of bed sediment size. Bar theory predicts nature and presence of bars and bar mode, here converted to active braiding index (Bi). The most important variables are actual width–depth ratio and nonlinearity of bed sediment transport. Results agree reasonably well with data. Empirical predictions are somewhat better than bar theory predictions, because the bank strength is indirectly included in the empirical prediction. In combination, empirical and theoretical prediction provide partial explanations for bar and channel patterns. Increasing potential‐specific stream power implies more energy to erode banks and indeed correlates to channels with high width–depth ratio. Bar theory predicts that such rivers develop more bars across the width (higher Bi). At the transition from meandering to braiding, weakly braided rivers and meandering rivers with chutes are found. Rivers with extremely low stream power and width–depth ratios hardly develop bars or dynamic meandering and may be straight or sinuous or, in case of disequilibrium sediment feed, anastomosing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e. step pools and riffle pools) and semialluvial morphologies (i.e. boulder cascades and forced step pools) on bedload entrainment and transport. Results indicate that dynamics of bedload entrainment are influenced by differences in flow resistance attributable to morphology. Scaled fractional analysis shows that in reaches with high form resistance most bedload transport occurs in partial mobility fashion relative to the available bed material, while calibers finer than 16 mm attain full mobility during bankfull flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches exhibiting reduced form resistance. Our findings confirm that the Shields value for mobilization of the median surface grain size depends on channel gradient and relative submergence; however, we also find that these relations vary considerably for cobble and gravel bed channels due to proportionality between dimensionless shear stress and grain size. Exponents of bedload rating curves across sites correlate most with the D90s of the mobile bed, however, where grain effects are controlled (i.e. along individual streams), differences in form resistance across morphologies exert a primary control on bedload transport dynamics. Application of empirical formulae developed for use in steep alpine channels present variable success in predicting transport rates in forested snowmelt streams. Formulae that explicitly account for reductions in mobile bed area and high morphological resistance associated with woody debris provide the best approximation to observed empirical data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The threshold of coarse sediment transport has been examined in natural streambeds in an upland Pennine (U.K.) area. Threshold values of the total boundary shear stress (T0) (for a given grain size), in a narrow natural stream (W/D < 11) are considerably higher than values of T0 in a broad stream (W/D > 11). Efficiency in the entrainment process is related not only to the overall channel geometry, but also varies as a function of discharge in channels characterized by compound roughness. Empirical curves relating T0 and a mean grain size (d 5) are presented, but are limited in application to streams of similar physical and hydraulic characteristics as the ones examined in this investigation. Considerable divergence is noted between these empirical functions and a summary empirical function for general application obtained from a published source. The reasons for this divergence are discussed. The influence of grain shape was found not to be important in the initiation of motion criterion. This conclusion may reflect the limited range of natural grain shapes in the study streams, but might reasonably apply to other field investigations of similar streams. Modifications of the Shields' and Yalin diagrams are suggested for practical applications in shallow streams with poorly-graded bed material. The Shields' parameter may be regarded as an inverse function of the relative protrusion of individual grains in the shallow flow depth (d 5/D). The increased importance of augmented drag forces, in the entrainment process in shallow flows, is suggested as the physical explanation for the reduced values of the Shields' parameter. However, the relationships presented should not be applied to laboratory experiments concerned with well-graded sediments (therefore beds with little deviation in level), in which the Shields' parameter may be regarded as constant at high Reynolds' grain numbers. Consistent estimated field values of ?, a threshold sediment transport parameter, might be used to compare field data to threshold values derived from statistical arguments and laboratory experiments reported in the literature.  相似文献   

11.
A river at equilibrium is described by a statistically-stationary mean bed elevation profile that arises in response to steady supplies of relief, water and sediment. Outside of the profile shape, how is the equilibrium state of a river most reliably identified and rigorously defined? Motivated by a proposed link between equilibrium and physical processes, we use scaling theory to develop the dimensionless channel response number ξ=KUb/Up. ξ is a metric for the local disequilibrium state of gravel-bed mountain streams, which reflects a balance between the rate of topographic adjustment Ub, and the rate of bed sediment texture adjustment Up. The coefficient K can take one of two forms depending on choice of length scale for topographic adjustment. We hypothesize that equilibrium occurs where and when ξ≈O(1), and consequently, disequilibrium is the more general state captured by conditions of ξ≉O(1). The rates Ub and Up are controlled by the mechanics of sediment deposition and entrainment at the local scale of the channel width. The extent to which either process regulates disequilibrium depends on the bed strength, which is set by the time-varying grain size distribution and packing. We use flume experiments to understand ξ and find that in the limit ξ>>1, the time-varying response of an experimental channel depends sensitively on the spatially-averaged bed shear stress ratio τ/τref. When τ/τref≈1.5, Ub was the dominant control on disequilibrium. However, when τ/τref≈2.0, Up contributed more significantly to disequilibrium. These results suggest that after an upstream supply perturbation, the equilibrium timescale is governed by Up, which we show is consistent with expectations from linear damping theory. Our experimental test of ξ is promising, but inconclusive with respect to our hypothesis. This uncertainty can be readily addressed with numerical or additional physical experiments. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Laboratory experiments using simulated tilting rill channels with different bed roughnesses have been conducted to determine hydraulic conditions for incipient motion of single rock fragments lying on rill beds. These threshold conditions can be described by a modified Shields' entrainment parameter (θm) and relative depth (Z), adjusted for rill conditions. The negative relation found between θm and Z also fits steep (stream) channel data collected by other investigators. Plots of the classical Shields' entrainment parameter (θ) versus both relative depth and relative particle size also showed clear negative trends. Special care has been taken to avoid false relations that can arise between compound parameters. This occurs when the latter are not independent from each other because of their definitions.  相似文献   

13.
Sediment transport of four boulder bed rivers is studied using lichenometry. The presence of lichens on boulders in the river channel is used to date the last mobilization of the blocks. Using size frequency diagrams and regional growth curves calibrated with dated reference points it is possible to determine the flood event responsible for the last mobilization of each boulder with lichens present. The specific stream power of flood events over the last 60 years is then calculated, and thresholds of sediment transport based on the sediment size are calculated. The results from the four studied rivers are compared to similar relationships in the literature. Sediment motion thresholds appear to be very variable within the same type of river (mountainous boulder bed rivers). The critical specific stream power necessary to mobilize a particle of a given diameter may vary by up to 10 times from one river to the next. Bed sediment size and river slope may explain this large range of stream powers. Calculation of the relative size of the transported particles (Di/D50) also shows that both hiding and protrusion effects, as well as channels slope, are important factors in sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Bagnold developed his formula for bedload transport over several decades, with the final form of the relation given in his 1980 paper. In this formula, bedload transport rate is a function of stream power above some threshold value, depth and grain size. In 1986, he presented a graph which illustrated the strength of his relation. A double‐log graph of bedload transport rate, adjusted for depth and grain size, versus excess stream power was shown to collapse along a line having a slope of 1·5. However, Bagnold based his analyses on limited data. In this paper, the formula is re‐examined using a large data set in order to define the most consistent empirical representation, and dimensional analysis is performed to seek a rationalization of the formula. Functional analysis is performed for the final version of the equation defined by Bagnold to determine if the slope of 1·5 is preserved and to assess the strength of the relation. Finally, relations between excess stream power and bedload transport are examined for a fixed slope of 1·5 to assess the performance of various depth and grain size adjustment factors. The rational scaling is found to provide the best result. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Measurements of annual travel distance (Lb) of bed load sediment at 16 locations in Alaska, the intermountain USA, west coast USA and Scotland are strongly correlated with bankfull channel width (r2 = 0·86, p < 0·001). Travel distance of particles is probably limited by trapping in bars, which have a longitudinal spacing proportional to channel width. Increased abundance of woody debris reduces bar spacing and may reduce Lb. Longer cumulative duration of bed load transporting flows in a year appears to increase Lb. Other predictors of annual travel distance such as stream power per unit length, drainage area and bankfull discharge were less well correlated with Lb (r2 ranging from 0·27 to 0·51). Stream power per unit bed area, basal shear stress and slope were not significantly related to Lb (r2 < 0·05). Most correlations were improved when regressions were limited to data from the west coast USA. Travel distance estimates can be used to help identify reaches that may take longer to recover from large, short‐term increases in sediment supply. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

16.
The stability criterion of maximum flow efficiency (MFE) has previously been found inherent in typical alluvial channel flow relationships, and this study investigates the general nature of this criterion using a wider range of flow resistance and bedload transport formulae. For straight alluvial channels, in which the effect of sediment sorting is insignificant, our detailed mathematical analysis demonstrates that a flow efficiency factor ε occurs generally as the ratio of sediment (bedload) discharge Qs to stream power Ω (γQS) in the form of . When ε is maximized (i.e. Qs is maximized or Ω is minimized), maximally efficient straight channel geometries derived from most flow resistance and bedload transport formulae are found compatible with observed bankfull hydraulic geometry relations. This study provides support for the use of the criteria of MFE, maximum sediment transporting capacity and minimum stream power for understanding the operation of alluvial rivers, and also addresses limitations to the direct application of its findings. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Evolution of bed material mobility and bedload grain size distributions under a range of discharges is rarely observed in braiding gravel-bed rivers. Yet, the changing of bedload grain size distributions with discharge is expected to be different from laterally-stable, threshold, channels on which most gravel bedload theory and observation are based. Here, simultaneous observations of flow, bedload transport rate, and morphological change were made in a physical model of a gravel-bed braided river to document the evolution of grain size distributions and bed mobility over three experimental event hydrographs. Bedload transport rate and grain size distributions were measured from bedload samples collected in sediment baskets. Morphological change was mapped with high-resolution (~1 mm precision) digital elevation models generated from close-range digital photogrammetry. Bedload transport rates were extremely low below a discharge equivalent to ~50% of the channel-forming discharge (dimensionless stream power ~70). Fractional transport rates and plots of grain size distributions indicate that the bed experienced partial mobility at low discharge when the coarsest grains on the bed were immobile, weak selective mobility at higher discharge, and occasionally near-equal mobility at peak channel-forming discharge. The transition to selective mobility and increased bedload transport rates coincided with the lower threshold for morphological change measured by the morphological active depth and active width. Below this threshold discharge, active depths were of the order of D90 and active widths were narrow (< 3% of wetted width). Above this discharge, both increased so that at channel-forming discharge, the active depth had a local maximum of 9D90 while active width was up to 20% of wetted width. The modelled rivers approached equal mobility when rates of morphological change were greatest. Therefore, changes in the morphological active layer with discharge are directly connected to the conditions of bed mobility, and strongly correlated with bedload transport rate. © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel‐bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel‐bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately one half kilometer of the former channel. The abandonment was rapid (probably within a few hours), leaving the bed texture essentially frozen in place at the peak of the flood. All locations sampled prior to the flood were resampled following the stream abandonment. In response to the high flow, the surface median grain size (D50s) coarsened slightly in the outer part of the bend while remaining nearly constant along the inner part of the bend, resulting in an overall increase from 18 to 21 mm for the study reach. Thus, the coarse bed surface texture persisted despite shear stresses throughout the bend that were well above the critical entrainment value. This may be explained because the response of the bed texture to increases in flow strength depends primarily upon the continued availability of the various grain size percentiles in the supply, which in this case was essentially unlimited for all sizes present in the channel. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Limited field and flume data suggests that both uniform and graded beds appear to progressively stabilize when subjected to inter-flood flows as characterized by the absence of active bedload transport. Previous work has shown that the degree of bed stabilization scales with duration of inter-flood flow, however, the sensitivity of this response to bed surface grain size distribution has not been explored. This article presents the first detailed comparison of the dependence of graded bed stability on inter-flood flow duration. Sixty discrete experiments, including repetitions, were undertaken using three grain size distributions of identical D50 (4.8 mm); near-uniform (σg = 1.13), unimodal (σg = 1.63) and bimodal (σg = 2.08). Each bed was conditioned for between 0 (benchmark) and 960 minutes by an antecedent shear stress below the entrainment threshold of the bed (τ*c50). The degree of bed stabilization was determined by measuring changes to critical entrainment thresholds and bedload flux characteristics. Results show that (i) increasing inter-flood duration from 0 to 960 minutes increases the average threshold shear stress of the D50 by up to 18%; (ii) bedload transport rates were reduced by up to 90% as inter-flood duration increased from 0 to 960 minutes; (iii) the rate of response to changes in inter-flood duration in both critical shear stress and bedload transport rate is non-linear and is inversely proportional to antecedent duration; (iv) there is a grade dependent response to changes in critical shear stress where the magnitude of response in uniform beds is up to twice that of the graded beds; and (v) there is a grade dependent response to changes in bedload transport rate where the bimodal bed is most responsive in terms of the magnitude of change. These advances underpin the development of more accurate predictions of both entrainment thresholds and bedload flux timing and magnitude, as well as having implications for the management of environmental flow design. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Stream networks expand and contract through time, impacting chemical export, aquatic habitat, and water quality. Although recent advances improve prediction of the extent of the wetted channel network (L ) based on discharge at the catchment outlet (Q ), controls on the temporal variability of L remain poorly understood and unquantified. Here we develop a quantitative, conceptual framework to explore how flow regime and stream network hydraulic scaling factors co-determine the relative temporal variability in L (denoted here as the total wetted channel drainage density). Network hydraulic scaling determines how much L changes for a change in Q , while the flow regime describes how Q changes in time. We compiled datasets of co-located dynamic stream extent mapping and discharge to analyze all globally available empirical data using the presented framework. We found that although variability in L is universally damped relative to variability in Q (i.e., streamflow is relatively more variable in time than network extent), the relationship is elastic, meaning that for a given increase in the variability in Q , headwater catchments will experience greater-than-proportional increases in the variability of L . Thus, under anticipated climatic shifts towards more volatile precipitation, relative variability in headwater stream network extents can be expected to increase even more than the relative variability of discharge itself. Comparison between network extents inferred from the L -Q relationship and blue lines on USGS topographic maps shows widespread underestimation of the wetted channel network by the blue line network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号