共查询到20条相似文献,搜索用时 15 毫秒
1.
The local scouring downstream of bed sills forming a sequence for bed stabilization in steep channels has been investigated in a laboratory flume. The initial bed slopes ranged from 0·078 to 0·148. The bed alluvium was characterised by a non‐uniform grain size distribution. The results show that when the ratio between the critical water depth hc and the sill spacing L rises above a characteristic value the scouring dynamics become heavily affected by the presence of the downstream sill, associated with the onset of a form of “interference” which renders the scouring process less effective. The difference with an “undisturbed” case is demonstrated. Self‐affinity of scour holes is confirmed and the scour length appears to be the reference parameter from which the scour depth might be evaluated. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
2.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
A critical concern regarding river bed stabilization and river engineering is the short‐term general scour that occurs in a field setting far from a river‐crossing structure or embankment during a typhoon‐induced flood. This study investigated the improvement of existing techniques that have been used to measure river bed scour. One of these techniques is the numbered‐brick column or scour chains method, in which only the maximum general scour depth of river bed is observed. A wireless tracer for monitoring real‐time scour was set‐up with a numbered‐brick column and was employed to collect synchronous data. The proposed method was successfully used to observe both real‐time scour and the maximum depth at flood peak. This observation was conducted at a steep gravel‐bed reach of the Shuideliaw Embankment on the intermittent Choshui River in Central Taiwan during Typhoon Soulik, which occurred in 2013. Future studies must be conducted to complete the development of an automatic real‐time scour and flood monitoring system for use in severe weather and flow conditions; this would facilitate the identification of river bed scour during conditions of unstable flow and the improvement of flood prevention engineering, bridge closure detection and emergency evacuation procedures. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
This study evaluates the possibility of determining bed material transport using the virtual rate of travel of individual particles, dimensions of the active layer of the streambed, and porosity and density of streambed material. Magnetically tagged stones and scour indicators were employed in Carnation Creek, British Columbia, to quantify transport rates. Observations cover flows up to 36 m3 s−1 (τ* = 0·081). Transport rates, ranging from 0·090 to 9·7 kg s−1 (0·12–13·2 m3 h−1), display a relatively sensitive trend with maximum stream power, as expected. Error analysis indicates that uncertainty in virtual velocity covers the majority of sample variance. An evaluation of the two measurement techniques used to delineate active layer dimensions, magnetically tagged stones and scour indicators, indicates that they yield comparable depths, widths and transport rates over the range of flows observed. Issues for further study are discussed. © 1998 John Wiley & Sons, Ltd. 相似文献
5.
In August 2003, the McLure forest fire burned 62% of the drainage basin of Fishtrap Creek. Streamflow has been measured there since the early 1970s, and suspended sediment concentration and channel morphology have been monitored since the fire. Although the short post‐fire period (four years) limits our ability to draw firm conclusions about streamflow changes, there has been no obvious increase in peak flows since the fire. However, the total runoff during the freshet period does appear to have increased and the onset of snowmelt appears to occur about two weeks earlier than it did prior to the fire. Suspended sediment records from Fishtrap Creek and from an unburnt reference stream nearby are similar, suggesting that the burnt areas have remained relatively stable and that the sediment supply to Fishtrap Creek has not been dramatically altered. In contrast, the stream channel morphology has changed, widening by over 100% of the original width in some places and transforming from a laterally stable plane‐bed morphology to a laterally active riffle‐pool morphology. The timing and magnitude of the observed morphologic changes are consistent with the predicted decline in bank strength due to root decay, implying that the observed changes are associated with an internal instability associated with changes to the stream boundaries, rather than with the more typically reported externally driven instabilities caused by changes in streamflow or sediment supply. This delayed response in the absence of large changes in streamflow or sediment supply, while ‘unusual’ in that it has not been documented in the previous literature, may be a common mode of response, particularly in wat'ersheds with nival flow regimes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
Laboratory experiments to determine the maximum size of sediment transported in shallow, rain-impacted flow were conducted in a recirculating flume 4·80 m long and 0·50 m wide. Rainfall intensities were varied between 51 and 138 mm h−1, flow was introduced from a header tank into the flume at rates ranging from 0 to 0·64 l s−1, and experiments were conducted on gradients between 3·5 and 10°. The following equation was developed: ML = (REFE)1·6363 in which M is particle mass, L is distance moved in unit time (cm min−1), RE is rainfall energy (J m−2 s−1) and FE is flow energy (J m−2 s−1). This equation can be used to predict sediment-transport competence of interrill overland flow. The equation is limited in its utility insofar as it has been developed using quartz grains and takes no account of variations in absorption of rain energy by natural ground surfaces. © 1998 John Wiley & Sons, Ltd. 相似文献
7.
An erratum has been published for this article in Earth Surface Processes and Landforms 27(7) 2002, 795. Estimates of scour and fill in rivers that are derived by differencing topographic surfaces are known to be negatively biased by local compensation of scour and fill between surveys but the magnitude of bias is not well known. This study examines the effect of survey frequency on volumes of scour and fill over a period of active channel braiding in a small‐scale river model. A 100 min, high temporal resolution time series of digital elevation models is artificially coarsened by selectively removing models. The resulting four overlapping time series have survey intervals of 10 min, 20 min, 50 min and 100 min. Cumulative scour and fill volumes for the 100 min period are compared between the four series. It is concluded that the decay in measured volumes of scour and fill with increased survey interval can be described using inverse functions. Cumulative scour–fill volumes are approximately 420 per cent greater over the study period for 10 min survey intervals than for a 100 min interval. After the 100 min period of competent flow, nearly 65 per cent of the channel area experienced significant compensation of scour and fill. Several compensation mechanisms were identified in association with braided channel kinetics, including lateral channel migration, the migration of bed forms, and channel avulsion. It is demonstrated that by negatively biasing scour, fill and net estimates, this error significantly affects morphological approaches to the estimation of bed load sediment transport. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
8.
Zhaoyin WANGProf Dr. International Research Training Center on Erosion Sedimentation. P.O.Box Beijing China Jinchi HUANG Dr. Senior Engineer China Institute of Water Resources Hydro-Power Research P.O.Box Beijing . Chi 《国际泥沙研究》1997,(3)
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea… 相似文献
9.
10.
Modelling soil erosion requires an equation for predicting the sediment transport capacity by interrill overland flow on rough surfaces. The conventional practice of partitioning total shear stress into grain and form shear stress and predicting transport capacity using grain shear stress lacks rigour and is prone to underestimation. This study therefore explores the possibility that inasmuch as surface roughness affects flow hydraulic variables which, in turn, determine transport capacity, there may be one or more hydraulic variables which capture the effect of surface roughness on transport capacity suffciently well for good predictions of transport capacity to be achieved from data on these variables alone. To investigate this possibility, regression analyses were performed on data from 1506 flume experiments in which discharge, slope, water temperature, rainfall intensity, and roughness size, shape and concentration were varied. The analyses reveal that 89·8 per cent of the variance in transport capacity can be accounted for by excess flow power and flow depth. Including roughness size and concentration in the regression improves that explained variance by only 3·5 per cent. Evidently, flow depth, when used in combination with excess flow power, largely captures the effect of surface roughness on transport capacity. This finding promises to simplify greatly the task of developing a general sediment equation for interrill overland flow on rough surfaces. Copyright © 1998 John Wiley & Sons, Ltd. 相似文献
11.
P. I. A. Kinnell 《水文研究》2012,26(10):1449-1456
Sheet and interrill erosion areas are sources of soil material rich in nutrients and pollutants. The loss of soil, nutrients and other chemicals from these areas is a matter of concern both in terms of maintaining soil productivity and the health of offsite environments. Many experiments on rainfall erosion have shown enrichment of fine material, nutrients and other chemicals in the sediment discharged for sheet and interrill erosion areas, but often these results were obtained over short periods of time. A qualitative mechanistic model of raindrop‐induced saltation is used to illustrate how this transport mechanism influences the composition of sediment discharged by rain‐impacted flow. Initially, fast moving particles are enriched in the sediment discharge but, over time, during a rainfall event, slower moving particles become more represented. Raindrop‐induced saltation promotes the storage of material on the soil surface with a coarser composition than the original soil. Winnowing of material from this storage by the development of flow‐driven saltation during high‐intensity events can modify the composition of the sediment discharged later by raindrop‐induced saltation. Given stable soil particles, the composition of the sediment discharged at the steady state is the same as the original soil. Enrichment is a non‐steady‐state phenomenon and failure to recognize the transient nature of enrichment may lead to inappropriate interpretation of the implications of the results from short‐term experiments. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer–Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval Δx and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs. 相似文献
13.
The slope effects on sediment trapping process in vegetative filter strips (VFS) are usually neglected in current modelling practices for VFS operation, which hamper the VFS design and performance evaluation, especially on steep slopes. To fill the knowledge gap, 12 laboratory experiments of sediment trapping in VFS were conducted with three different inflow discharge (80, 100, and 120 ml s−1) and four slope angles (5,10, 15, and 20°). The experimental results show that, on steep slopes (10, 15, and 20°), a part of trapped sediment particles in VFS can be eroded again and then dragged to the downstream as bed load, whilst they do not move on gentle slope (5°). To describe the complex processes, a simple and effective modelling framework was developed for sloped VFS by coupling the slope infiltration, runoff, and modified sediment transport model. The model was tested against the experimental results and good agreements between the modelled and observed results were found in both runoff and sediment transport processes for all cases. On steep slopes, the sediment trapping performance of VFS decreases significantly because the erosion of deposited sediment particles can account for more than 60% of the sediment load in the outflow. The slope effect on sediment trapping efficiency of VFS varies greatly with soil, VFS, and slope properties. The model was compared with previous sediment transport equation and found that both methods can satisfactorily predict the sediment trapping of VFS on gentle slopes, but previous sediment transport equation is likely to overestimate the sediment trapping efficiency in VFS on steep slopes. This model is expected to provide a more realistic and accurate method for predicting runoff and sediment reduction in VFS on sloping surfaces. 相似文献
14.
15.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
16.
Step–pool morphology characterizes many high‐gradient streams in a variety of natural settings, but formative processes and evolutionary dynamics are still poorly understood. In this paper, natural step–pool geometry is compared with steep alluvial channels where grade‐control structures such as check‐dams and bed sills make the stream profile resemble a natural stepped stream. Along these channels, local scouring due to falling jets forms plunge pools under each structure, analogous to natural steps determining the formation of pools. In order to test the hypothesis that natural pools are analogous to pools formed below grade‐control works with respect to their dimensions, shape and formative dynamics, 37 natural pools and 73 artificial pools were surveyed in 10 mountain streams of the eastern Italian Alps. Pools below grade‐control works featured a transitional zone between the scour hole and the downstream sloping bed, marked by a depositional berm. When geometric parameters such as maximum pool depth, length and step–berm distances are normalized to the jet virtual energy, no statistically significant differences were detected between natural and artificial systems. These results lend support to an upstream‐forced cascade model for step–pool formation, where the energy of falling jets controls the geometry of the pools, and is therefore regarded as the most important scaling‐independent variable. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
17.
Reliable quantification of suspended sediment (SS) and particulate phosphorus (PP) transport, and identification of the various delivery pathways at the catchment level, is an important and necessary aid to appropriate catchment management. In this study we measured storm event, seasonal and annual losses of SS and PP from a Danish arable catchment, Gelbæk Stream, using a multisampling strategy. SS losses for the study years May 1993–April 1994 and May 1994–April 1995 ranged from 71 to 88 kg ha−1, while PP losses ranged from 0·32 to 0·36 kg P ha−1. In both cases losses mainly occurred during infrequent storm events. In comparison with intensive storm sampling, infrequent (fortnightly) sampling underestimated annual transport during the two study years by −24 and −331%, respectively, for SS, and by −8·6 and −151%, respectively, for PP. Reliable estimation of the transport of sediment and sediment-associated nutrients and other substances thus necessitates the use of an intensive monitoring approach. Turbidimeters proved to be a good substitute for direct measurement of SS, especially during storm events, although careful calibration is needed at the seasonal and storm event levels. Experience shows that in artificially drained and geologically complex catchments such as Gelbæk, simultaneous comparative monitoring of different sources (e.g. subsurface drainage water) is an important means of reliably discriminating between the various diffuse sources of sediment and phosphorus. Subsurface drainage water was found to account for 11–15% of the annual SS export from the catchment; the corresponding figure for PP being 11–18%. Surface runoff was only a source of SS and PP during the first study year, when it accounted for 19% of SS and 7% of PP catchment export. Stream bank/bed erosion must therefore have been the major diffuse source of SS and PP in both study years. The study also revealed that analysis of the trace element content (e.g. 137Cs, 210Pb) of the SS transported in subsurface drainage water and stream water during storm events is a useful means of discriminating between diffuse losses of SS delivered from topsoil and subsoil compartments. © 1997 by John Wiley & Sons, Ltd. 相似文献
18.
Sequences of arti?cial steps are sometimes used to reproduce the natural step–pool morphology of high‐gradient streams. The depth, length and shape of the scour holes in gravel‐bed rivers can be predicted reasonably using recently developed formulae. However, the properties of the scour holes can sometimes be affected by the distance between structures. This effect is called ‘geometrical interference’ and leads to a reduction of the scour hole compared to its potential size. Geometrical interference may occur in sequences of arti?cial steps in high‐gradient torrents, where structures are sometimes built at distances of a few tens of metres apart, but may also apply to natural step–pool systems. In this paper, a series of tests have been conducted to determine the effect of bed sill spacing and sediment grading on the potential erosion by jets forming over the sills. A new formula is derived, applicable to high‐gradient streams (slope > 0·04), which can be applied to the special case of scour holes developed by interfering sills. Sediment size gradation, not accounted for in previous formulae, is found to have a signi?cant effect on the scour dimensions and is included in the new predictive formula. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
19.
Laboratory flume experiments were carried out to evaluate the effect of particle density on bedload transport of sand‐sized particles and the effect of a suspended load of clay particles (kaolinite) on bedload transport of sand‐sized particles in rill flow conditions. Three materials in the range 400–600 µm were selected to simulate bedload transport of primary particles and aggregates: sand (2650 kg/m3), crushed brick (2450 kg/m3) and anthracite (1300–1700 kg/m3). In the two first experiments, two different methods were applied to determine bedload transport capacity of coarse particles for various conditions of flow discharge (from 2 to 15 L/min) and slope (2.2, 3 and 4%). In the third experiment, clear water was replaced with kaolinite–water mixture and bedload transport capacity of crushed brick particles was determined for a 4% slope and different concentrations of kaolinite (0, 7, 41 and 84 g/L). The results showed that bedload transport increased significantly with the decrease in particle density but the effect of particle density on transport rates was much less important than flow discharge. Velocity measurements of clear flow, flow mixed with coarse particles and coarse particles confirmed the existence of a differentiation between suspended load and bedload. In these experimental conditions, suspended load of kaolinite did not affect bedload rates of crushed brick particles. Three transport capacity formulae were tested against observed bedload rates. A calibration of the Foster formula revealed that the shear stress exponent should be greater than 1.5. The Low and the Govers unit stream power (USP) equations were then evaluated. The Low equation was preferred for the prediction of bedload rates of primary particles but it was not recommended in the case of aggregates of low density because of the limited experimental conditions applied to derive this equation. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
20.
Data from flume studies are used to develop a model for predicting bed‐load transport rates in rough turbulent two‐dimensional open‐channel flows moving well sorted non‐cohesive sediments over plane mobile beds. The object is not to predict transport rates in natural channel flows but rather to provide a standard against which measured bed‐load transport rates influenced by factors such as bed forms, bed armouring, or limited sediment availability may be compared in order to assess the impact of these factors on bed‐load transport rates. The model is based on a revised version of Bagnold's basic energy equation ibsb = ebω, where ib is the immersed bed‐load transport rate, ω is flow power per unit area, eb is the efficiency coefficient, and sb is the stress coefficient defined as the ratio of the tangential bed shear stress caused by grain collisions and fluid drag to the immersed weight of the bed load. Expressions are developed for sb and eb in terms of G, a normalized measure of sediment transport stage, and these expressions are substituted into the revised energy equation to obtain the bed‐load transport equation ib = ω G 3·4. This equation applies regardless of the mode of bed‐load transport (i.e. saltation or sheet flow) and reduces to ib = ω where G approaches 1 in the sheet‐flow regime. That ib = ω does not mean that all the available power is dissipated in transporting the bed load. Rather, it reflects the fact that ib is a transport rate that must be multiplied by sb to become a work rate before it can be compared with ω. It follows that the proportion of ω that is dissipated in the transport of bed load is ibsb/ω, which is approximately 0·6 when ib = ω. It is suggested that this remarkably high transport efficiency is achieved in sheet flow (1) because the ratio of grain‐to‐grain to grain‐to‐bed collisions increases with bed shear stress, and (2) because on average much more momentum is lost in a grain‐to‐bed collision than in a grain‐to‐grain one. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献