首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
The study aims to calibrate/validate and apply the dune-erosion model, XBeach, in order to predict morphological response to storm events along a meso-tidal, steeply sloping beach. More than 10,000 XBeach calibration runs, including different model parameters and erosion events, were compared with measurements of beach-profile response to storm conditions. Off-shore wave and tidal measurements were used as input for a SWAN wave model, which was used to provide wave conditions to XBeach. The results indicate that using XBeach to predict beach-profile morphodynamic response during storm events on steeply sloping intermediate-to-reflective beaches may be more demanding than for dissipative beaches and that the default model setup can overestimate dune/beach-face erosion. The performance of the model after calibration was satisfactory, with Brier Skill Scores from 0.2 to 0.72. XBeach was found to be more sensitive to input parameters such as the beach-face slope and the surf similarity parameter ξ (especially for values ξ?>?0.6). The calibrated XBeach setup was used for simulations of storm scenarios with different return periods (5, 25, and 50?years), and the simulations highlighted the fragility of the dune field and the potential for storm-induced dune retreat, lowering, and overwash in the study area. Finally, the nested SWAN/XBeach models were forced by an existing operational wave-forecast WAVEWATCH-III/SWAN model, operated by the Portuguese Hydrographic Institute to generate daily forecasts of storm impact and serve as a prototype-case for an early warning system for storm hazard mitigation.  相似文献   

2.
This study analyses beach morphological change during six consecutive storms acting on the meso‐tidal Faro Beach (south Portugal) between 15 December 2009 and 7 January 2010. Morphological change of the sub‐aerial beach profile was monitored through frequent topographic surveys across 11 transects. Measurements of the surf/swash zone dimensions, nearshore bar dynamics, and wave run‐up were extracted from time averaged and timestack coastal images, and wave and tidal data were obtained from offshore stations. All the information combined suggests that during consecutive storm events, the antecedent morphological state can initially be the dominant controlling factor of beach response; while the hydrodynamic forcing, and especially the tide and surge levels, become more important during the later stages of a storm period. The dataset also reveals the dynamic nature of steep‐sloping beaches, since sub‐aerial beach volume reductions up to 30 m3/m were followed by intertidal area recovery (–2 < z < 3 m) with rates reaching ~10 m3/m. However, the observed cumulative dune erosion and profile pivoting imply that storms, even of regular intensity, can have a dramatic impact when they occur in groups. Nearshore bars seemed to respond to temporal scales more related to storm sequences than to individual events. The formation of a prominent crescentic offshore bar at ~200 m from the shoreline appeared to reverse the previous offshore migration trend of the inner bar, which was gradually shifted close to the seaward swash zone boundary. The partially understood nearshore bar processes appeared to be critical for storm wave attenuation in the surf zone; and were considered mainly responsible for the poor interpretation of the observed beach behaviour on the grounds of standard, non‐dimensional, morphological parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

4.
A five‐year dataset of Argus‐derived mean intertidal positions has been analysed to characterize the shoreface variability in a beach protected by a system of groynes and a parallel low crested structure (Lido di Dante Ravenna, Italy). For the period 2004–2009, 84 intertidal beach bathymetries and shorelines at the zero sea level were used as indicators to assess beach changes in between a number of selected surveys and to determine characteristic patterns of the beach response to storm events from different directions. Variations in the shoreline at the zero sea levels have been quantified and analysed in conjunction with nearshore wave conditions and provenance linked to storm events. These fall into two categories: (1) storm events occurring during Bora (north‐eastern) wind conditions and (2) storm events occurring during Scirocco (south‐eastern) wind conditions. The results show that, apart from main beach advances of the whole protected beach due to nourishments periodically carried out, a marked variability is observed among the four sub‐cells into which the shoreface behaviour has been separately analysed. In particular, a dependence of beach rotation in the ‘artificially embayed’ area on the substantially bi‐directional wave climate has been shown: Bora and Scirocco storm events produce shoreline rotation in counterclockwise and clockwise directions, respectively, due to the occurrence of longshore currents in the opposite direction in the nearshore. An attempt was made to correlate the shoreface dynamics for the main rotation events (14 selected ones) to the wave attack intensity (as the total energy flux due to storm events). A relationship seems to occur (for each storm category) between the shoreline displacements estimated for each sub‐cell and the total energy flux computed for inter‐survey periods, supporting the occurrence of a link between the observed morphological changes and the hydrodynamic forcing associated with storm events in the five‐year monitoring period. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The storm sequence of the 2013–14 winter left many beaches along the Atlantic coast of Europe in their most eroded state for decades. Understanding how beaches recover from such extreme events is essential for coastal managers, especially in light of potential regional increases in storminess due to climate change. Here we analyse a unique dataset of decadal beach morphological changes along the west coast of Europe to investigate the post-2013–14 winter recovery. We show that the recovery signature is site specific and multi-annual, with one studied beach fully recovered after 2 years, and the others only partially recovered after 4 years. During the recovery phase, winter waves primarily control the timescales of beach recovery, as energetic winter conditions stall the recovery process whereas moderate winter conditions accelerate it. This inter-annual variability is well correlated with climate indices. On exposed beaches, an equilibrium model showed significant skill in reproducing the post-storm recovery and thus can be used to investigate the recovery process in more detail. © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
A series of airborne topographic LiDAR data were obtained from May 2008 to January 2014 over two coastal sites of northern France (Bay of Wissant and east of Dunkirk). These data were used with wind and tide gauge measurements to assess the impacts of storms on beaches and coastal dunes, and particularly of the series of major storms that hit western Europe during the fall and early winter of 2013. Our results show a high variability in shoreline response from one site to the other, but also within each coastal site. Coastal dune erosion and shoreline retreat occurred at both sites, particularly on the coast of the Bay of Wissant where shoreline retreat up to about 40 m was measured. However, stability or even shoreline advance were also observed despite the occurrence of an extreme water level with a return period >100 years during the storm Xaver in early December 2013. Comparison of shoreline change with variations of coastal dune and upper beach volumes revealed only weak relationships. Our results nevertheless showed that shoreline behavior seems to strongly depend on the initial sediment volume on the upper beach before the occurrence of the storms. According to our measurements, an upper beach volume of about 30 m3 m?1 between the dune toe and the mean high water level is sufficient at these sites to protect the coastal dunes from storm waves associated with high water levels with return periods >10 years. The identification of such thresholds in terms of upper beach width or sediment volume may represent valuable information for improving the management of shoreline change by providing an estimate of the minimum quantity of sand on the upper beach necessary to ensure shoreline stability in this region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A fifteen year history of coastal dune recession at Magilligan, Northern Ireland has revealed both time and space contrasts in processes and morphology. Since 1968 ‘storm’ frequency has increased, while dune retreat reached a peak (5·4 m) in 1978–1979. Three types of dune eroding events are noted, resulting from particular wave/wind/tide combinations. The spatial variability in dune scarping is associated with vegetation and soil development, and slope failures range from granular avalanches to retrogressive rotational slumps.  相似文献   

8.
In order to decrease the simulation time of morphodynamic models, often-complex wave climates are reduced to a few representative wave conditions (RWC). When applied to embayed beaches, a test of whether a reduced wave climate is representative or not is to see whether it can recreate the observed equilibrium (long-term averaged) bathymetry of the bay. In this study, the wave climate experienced at Milagro Beach, Tarragona, Spain was discretized into ‘average’ and ‘extreme’ RWCs. Process-based morphodynamic simulations were sequenced and merged based on ‘persistent’ and ‘transient’ forcing conditions, the results of which were used to estimate the equilibrium bathymetry of the bay. Results show that the effect of extreme wave events appeared to have less influence on the equilibrium of the bay compared to average conditions of longer overall duration. Additionally, the persistent seasonal variation of the wave climate produces pronounced beach rotation and tends to accumulate sediment at the extremities of the beach, rather than in the central sections. It is, therefore, important to account for directional variability and persistence in the selection and sequencing of representative wave conditions as is it essential for accurately balancing the effects beach rotation events.  相似文献   

9.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a palaeo-storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Beach‐ridge systems are important geo‐archives providing evidence for past wave climate including catastrophic storm flood events. This study investigates the morphological impacts of the 1872 Baltic storm flood on a beach‐ridge system (sandy spit) in south‐eastern Denmark and evaluates the frequency of extreme storm flood events in the area over a longer time perspective. This paper combines field studies of morphology and sedimentary deposits, studies of historical maps, digital terrain model, ground‐penetrating radar profiles, and luminescence dating. Sea water reached 2.8 m above mean sea level (amsl) during peak inundation and, based on studies of the morphological impacts of the 1872 storm flood, the event can be divided into four phases. Phase 1: increasing mean water levels and wave activity at the beach brought sediments from the beach (intertidal bars and normal berm) higher up in the profile and led to the formation of a storm‐berm. Phase 2: water levels further increased and sediment in the upper part of the profile continued to build up the storm‐berm. Phase 3: water levels now reached the top of the dune ridge and were well above the storm‐berm level. Sea water was breaching the dune ridge at several sites and wash‐over fans were generated until a level where the mean water level had dropped too much. Phase 4: the non‐vegetated wash‐over fans functioned as pathways for aeolian sand transport and relatively high dunes were formed in particular along the margins of the fan where aeolian sand was trapped by existing vegetation. The studied beach‐ridge system records about 4500 years of accumulation; the storm flood sediments described are unique suggesting that the 1872 Baltic storm flood event was an extreme event. Thus studies of beach‐ridge systems form a new source for understanding storm surge risk. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of the seasons of the year on beach changes is well documented in the literature. One generalization which has emerged is that beaches are ‘combed down’ in winter and ‘built up’ in summer. Some workers have disagreed with this dictum because field evidence does not necessarily support the assertion. This study, located in the humid tropics, shows, with the aid of graduated pegs emplaced perpendicularly to the shoreline, that the magnitude and frequency of beach changes are greater in the wet, than in the dry season. Furthermore, there is a net loss of beach materials in the wet season and a net gain in the dry season, even though erosion and accretion occur throughout the year with no statistically significant difference in their magnitudes. Erosion prevails at the northern half of the beach while accretion is dominant to the south. The upper and lower foreshore zones are more prone to changes than the mid-tide level.  相似文献   

12.
The southwest coast of England was subjected to an unusually energetic sequence of Atlantic storms during the 2013/2014 winter, with the 8‐week period from mid‐December to mid‐February representing the most energetic period since at least 1953. A regional analysis of the hydrodynamic forcing and morphological response of these storms along the SW coast of England highlighted the importance of both storm‐ and site‐specific conditions. The key factor that controls the Atlantic storm wave conditions along the south coast of southwest England is the storm track. Energetic inshore wave conditions along this coast require a relatively southward storm track which enables offshore waves to propagate up the English Channel relatively unimpeded. The timing of the storm in relation to the tidal stage is also important, and coastal impacts along the macro‐tidal southwest coast of England are maximised when the peak storm waves coincide with spring high tide. The role of storm surge is limited and rarely exceeds 1 m. The geomorphic storm response along the southwest coast of England displayed considerable spatial variability; this is mainly attributed to the embayed nature of the coastline and the associated variability in coastal orientation. On west‐facing beaches typical of the north coast, the westerly Atlantic storm waves approached the coastline shore‐parallel, and the prevailing storm response was offshore sediment transport. Many of these north coast beaches experienced extensive beach and dune erosion, and some of the beaches were completely stripped of sediment, exposing a rocky shore platform. On the south coast, the westerly Atlantic storm waves refract and diffract to become southerly inshore storm waves and for the southeast‐facing beaches this results in large incident wave angles and strong eastward littoral drift. Many south coast beaches exhibited rotation, with the western part of the beaches eroding and the eastern part accreting. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

13.
One of the major problems of shingle beach dynamics is the method by which coarse gravel is transferred from beach face to storm beach, the latter often lying several metres above high spring tidal levels. The mechanism which is usually proposed, cites the action of plunging breakers as being central to this problem of sediment transfer. However, the nature of net residual fluid force of plunging breakers is deemed unsatisfactory for any substantial upbeach (onshore) sediment transport during storm conditions on gravel beaches. A mechanism is proposed by which high still water levels due to high astronomical tides, onshore storm force winds and allied wave surge, promote shoaling characteristics and beach profile changes which are conducive to spilling breaker development at tidal extremities. It is the net onshore fluid force vector of the spilling breaker overtopping the beach crest which may be the cause of extreme sedimentation events on the storm beach. An example of such sediment transfer is given for a known storm beach sedimentation event at Llanrhystyd gravel beach, West Wales, during February 1974. Process variables were monitored on several days allowing the use of an inshore breaker steepness criterion, to indicate positions in the tidal regime where plunging breakers give way to spilling forms. This example serves to suggest that more attention should be given to the nature and characteristics of shoaling waves, especially in respect of breaker type, when examining problems of shingle beach dynamics and sedimentation.  相似文献   

14.
Short‐lived collapse features affecting the intertidal sandy profile were observed on mud‐rich beaches in Cayenne. They were formed in packets of beach sand accumulating over thick (several metres) fluid to under‐consolidated foreshore mud, which adjusts to this sand loading by seaward and longshore migration of fluid mud and subsequent in situ mud dewatering, thus generating subsidence and deformation of the overlying sand sheet. These sandy collapse features required active longshore sand transport and were washed out by wave processes at each rising tide. They finally disappeared permanently as adjustment of the underlying mud enabled stabilization of the beach profile. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Berm formation and morphological development of the beach face have been observed during a neap–neap tidal cycle on the gently sloping and accreting beach at Vejers, Denmark. During the field campaign, an intertidal bar migrated onshore and stabilized as a berm on the foreshore. A new intertidal bar occurred on the lower beach face, migrated onshore on the rising tide and finally merged with the pre‐existing berm. As the tide continued to rise, the new berm translated further onshore as an intertidal bar to the uppermost part of the foreshore. The sediment transport during the berm transition was onshore directed in the upper swash and offshore directed in the lower swash. This berm development can be described through both the neap‐berm, ridge‐and‐runnel and berm‐ridge development concepts proposed by Hine (Sedimentology 1979; 26: 333–351), and all three stages were observed during only three tidal cycles. The main factors controlling this fast transformation were the gentle slope of the cross‐shore profile, rapid water level translation rates, substantial swash overtopping of the berm, and low infiltration rates. Despite the onshore migration of intertidal bars and berm formation, no net foreshore accretion took place during the field campaign. This was largely due to the formation of rip channels with strong rip currents cutting through the intertidal bars and the berm, which acted as a sediment drain in the profile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Beaches are common features of many rocky shorelines and can be considered to be constrained by the underlying geology. In mesotidal to macrotidal areas the slope of the substrate and sediment supply are the primary factors in constraining the size and development of beaches on shore platforms. In microtidal settings it is not known if these factors are wholly responsible for determining the presence of beaches on shore platforms, nor the contribution of other factors such as hydrodynamics. The microtidal coast of Victoria, Australia, is surveyed in this study in order to quantify the morphological boundary conditions that constrain beach development on semi‐horizontal shore platforms. An ample sediment supply indicates that the underlying geology is controlling the presence and absence of beaches. Where beaches occur they always overlie a rock ramp which is the steepest part of the platform. The two most important morphological constraints were platform width and height both of which significantly correlated with beach volume. An elevational threshold exists at just over +1.0 m where beaches cannot accumulate. Below this threshold, platform width appears to be the principle constraining factor in beach accumulation. An evolutionary model is inferred which suggests that dissipation of wave energy associated with platform widening plays an important role in allowing beaches to accumulate. The model suggests beaches on platforms will be particularly sensitive to sea level rise. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Deposits of late‐Holocene beach sand buried conifer forests episodically emerge on beaches of the Oregon coast. Simultaneously, sand dunes buried late‐Holocene forests growing on marine terraces landward of the beaches. Dune ramps, up to 60 m in elevation, connected the beach and dune deposits. The average age of wood samples from stumps rooted on the shore platforms is 3·07 ± 1·45 ka. The average age of wood and charcoal samples embedded in forest soil on the marine terraces is 3·27 ± 1·46 ka. Between 1994 and 2006, winter storm waves exposed more than 4·5 km2 of late‐Holocene forest soil on shore platforms at 19 localities. Rooted stumps without soil were uncovered at an additional 14 localities. Once exposed, wave action eroded the soil rapidly (one to two years). The intact forest soil and roots on the shore platforms must have been nearly continuously buried, protected and preserved prior to recent exposure. The late‐Holocene buried forest provides the basis for a conceptual model of coastal evolution. A three stage reversal of erosion and sand supply must have occurred: (1) wave erosion switched to seaward advancement of forests, (2) forest growth and soil development switched to burial beneath beach and dune sand and (3) burial and preservation switched to wave erosion, truncation of dune ramps and landward retreat of sea cliffs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Cliff erosion along a section of the West Wales coastline is described. Rockfalls, mudslides, and retreating fencelines are evidence of current activity. Measurements over a two-year period (1983-85) gave mean annual recession figures of up to 0.25 m yr−1 for glacial embayments. Wave refraction modelling and longshore beach surveys confirmed the existence of ‘high’ and ‘low’ beaches. Factors influencing variation in recession rates were identified and measured. Regression analysis suggested that the volume of beach-face material was the dominant explanatory variable in short-term cliff erosion.  相似文献   

19.
Topographic indices may be used to attempt to approximate the likely distribution of variable source areas within a catchment. One such index has been applied widely using the distribution function catchment model, TOPMODEL, of Beven and Kirkby (1979). Validation of the spatial predictions of TOPMODEL may be affected by the algorithm used to calculate the model's topographic index. A number of digital terrain analysis (DTA) methods are therefore described for use in calculating the TOPMODEL topographic index, In(a/tanβ) (a = upslope contributing area per unit contour; tanβ = local slope angle). The spatial pattern and statistical distribution of the index is shown to be substantially different for different calculation procedures and differing pixel resolutions. It is shown that an interaction between hillslope contributing area accumulation and the analytical definition of the channel network has a major influence on calculated In(a/tanβ) index patterns. A number of DTA tests were performed to explore this interaction. The tests suggested that an ‘optimum’ channel initiation threshold (CIT) may be identified for positioning river headwaters in a raster digital terrain model (DTM). This threshold was found to be dependent on DTM grid resolution. Grid resolution is also suggested to have implications for the validation of spatial model predictions, implying that ‘optimum’ TOPMODEL parameter sets may be unique to the grid scale used in their derivation. Combining existing DTA procedures with an identified CIT, a procedure is described to vary the directional diffusion of contributing area accumulation with distance from the channel network.  相似文献   

20.
Many estuaries contain sandy beaches that provide habitats and offer protective buffers for wetlands and infrastructure, alongside cultural and recreational resources. Research underpinning coastal management tends to focus on tide- and swell-dominated sandy beaches, but little attention is given to beaches in estuaries and bays (BEBs) that exist along a continuum of wind/swell wave, tide and riverine influence. BEBs are subject to less wave energy than open coast locations because of the generally narrow window of directions for which ocean waves can propagate through the entrance. However, when storm wave direction coincides with the orientation of the estuary or bay entrance, waves can penetrate several kilometres inside. Here we focus on eight BEBs in two major bays/estuaries in Sydney, Australia and present observations from before and after a major extratropical storm with waves from an atypical direction in June 2016. We quantify magnitudes of beach erosion and recovery rates for 3 years post-storm. We show that when high-energy storm waves penetrate bays and estuaries, BEBs can undergo up to 100% of subaerial beach erosion. Three years after the storm, only 5 of the 29 (17%) eroded subaerial beach profiles had recovered to their pre-storm volume. This is likely due to the lack of low-frequency, beach-building waves at BEBs under modal weather conditions in between storms, in contrast to open coast beaches. We also show that the recovery of BEBs may be limited by the absence of adjacent sediment reservoirs due to the dominance of tidal processes mid-channel. Our study highlights the unique behaviour of BEBs relative to beaches on the open coast, and that shifting wave direction needs to be considered in long-term beach resilience under climate change. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号