首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
When subjected to long‐period ground motions, high‐rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full‐scale substructure shaking table test to reproduce large floor responses of high‐rise buildings. The response at the top floor of a virtual 30‐story building model subjected to a synthesized long‐period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber‐and‐mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open‐loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H method are adopted to construct the controller. A numerical example is presented to illustrate the open‐loop IDCS algorithm and compare the performance of different methods of controller design. A series of full‐scale substructure shaking table tests are conducted in E‐Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber‐and‐mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A seismic shaking‐table test performed on a one‐storey steel frame with an 8 ton RC floor slab was reproduced on a similar specimen by means of the pseudo‐dynamic (PsD) method. A satisfactory agreement of the results could only be achieved after recalibration of the theoretical mass in the PsD equation and proper inclusion in the PsD test input of the horizontal and pitching accelerations measured on the table. In the shaking‐table test, the spurious pitching motion produced a significant increase in the apparent damping that could be estimated as a function of the pitching dynamic flexibility of the system. Dynamic and PsD snap‐back tests were also performed to provide an additional check of the reliability of the PsD method. The spurious pitching motion of the shaking table should always be measured during the tests and reported as a mean to increase the reliability and usefulness of the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A new mass rig system is proposed to minimize the deficiencies in current shaking table testing setups. This is accomplished by placing the inertial mass on a convex path designed to impose P‐Delta demands on slender cantilever columns. The design and performance of the mass rig system, and the principles used in deriving the equations of motion and their analytical validation against results obtained from shaking table tests, are presented. Formulation of the governing equations of motion was based on Lagrangian mechanics and solved using an implicit linear acceleration method with an adaptive time step formulation. Friction developed in the sliding system was also incorporated in the equations of motion. Experimental results validated the accuracy in the derivation and solution of the equations of motion. Validated by analytical and experimental results, P‐Delta effects were found to increase the displacement demands on slender columns in the low‐frequency range of acceleration input, while in the high‐frequency range P‐Delta effects led to no increase and in some cases even a reduction in displacement demands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
An analytical model, which aims at reproducing the response of a large‐scale dynamic testing facility, that is a system composed of the specimen/shaking table/reaction‐mass/airbags/dampers/soil is developed. The Lagrangian of the system is derived, under the assumption of large displacements and rotations. A set of four nonlinear differential equations is obtained and solved with numerical methods. Preliminary verifications of the derived model are carried out by reproducing both well‐known results in the literature as well as those of a lumped model employed in the design of an existing dynamic testing facility. The case‐study for validating the nonlinear equations of motion is the shaking table of the EUCENTRE Laboratory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A tuned mass damper (TMD) system consists of an added mass with properly functioning spring and damping elements for providing frequency‐dependent damping in a primary structure. The advantage of a friction‐type TMD, that is, a nonlinear TMD, is its energy dissipation via a friction mechanism. In contrast, the disadvantages of a passive friction TMD (PF‐TMD) are its fixed and predetermined slip load and loss of tuning and energy dissipation capabilities when it is in a stick state. A semi‐active friction TMD (SAF‐TMD) is used to overcome these disadvantages. The SAF‐TMD can adjust its slip force in response to structure motion. To verify its feasibility, a prototype SAF‐TMD was fabricated and tested dynamically using a shaking table test. A nonsticking friction control law was used to keep the SAF‐TMD activated and in a slip state in earthquakes at varying intensities. The shaking table test results demonstrated that: (i) the experimental results are consistent with the theoretical results; (ii) the SAF‐TMD is more effective than the PF‐TMD given a similar peak TMD stroke; and (iii) the SAF‐TMD can also prevent a residual TMD stroke in a PF‐TMD system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes the results of shaking table tests to ascertain the ultimate behavior of slender base‐isolated buildings and proposes a time history response analysis method, which can predict the ultimate behavior of base‐isolated buildings caused by buckling fracture in laminated rubber bearings. In the tests, a base‐isolated structure model weighing 192 kN supported by four lead rubber bearings is used. The experimental parameters are the aspect ratio of height‐to‐distance between the bearings and the shape of and the axial stress on the bearings. The test results indicate that the motion types of the superstructure at large input levels can be classified into three types: the sinking type; the uplift type; and the mixed type. These behaviors depend on the relationship between the static ultimate lateral uplifting force on the superstructure and the lateral restoring characteristics of the base‐isolated story. In the analysis method, bearing characteristics are represented by a macroscopic mechanical model that is expanded by adding an axial spring to an existing model. Nonlinear spring characteristics are used for its rotational, shear, and axial spring. The central difference method is applied to solve the equation of motion. To verify the validity of the method, simulation analysis of the shaking table tests are carried out. The results of the analysis agree well with the test results. The proposed model can express the buckling behavior of bearings in the large deformation range. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes the use of the nonlinear restoring force in an isolation system to improve the performance of a seismic isolator. Nonlinear magnetic springs applied to guideway sliding isolators (GSI) that protect precision machinery against seismic motion were studied. The magnetic springs use a non‐contact magnetic repulsion force to achieve a nonlinear property. A numerical simulation model of the GSI system using step‐by‐step integration in the time domain was developed. A full‐scale shaking table test was performed to verify the accuracy of the numerical model. Simulation and experimental results show that the GSI system with magnetic springs has good performance when subjected to floor vibrations during earthquakes. A parametric analysis of the magnetic springs in the GSI system under seismic motion was theoretically investigated. It was found that sufficient magnetic forces can diminish the system relative displacements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper focuses on the development of a linear analytical model (even though servo‐hydraulic actuation systems are inherently non‐linear, especially for large amplitude simulations — near the performance capacity of the system — linearized models proved experimentally to be quite effective overall in capturing the salient features of shaking table dynamics) of a uni‐axial, servo‐hydraulic, stroke controlled shaking table system by using jointly structural dynamics and linear control theory. This model incorporates the proportional, integral, derivative, feed‐forward, and differential pressure gains of the control system. Furthermore, it accounts for the following physical characteristics of the system: time delay in the servovalve response, compressibility of the actuator fluid, oil leakage through the actuator seals and the dynamic properties of both the actuator reaction mass and test structure or payload. The proposed model, in the form of the total shaking table transfer function (i.e. between commanded and actual table motions), is developed to account for the specific characteristics of the Rice University shaking table. An in‐depth sensitivity study is then performed to determine the effects of the table control parameters, payload characteristics, and servovalve time delay upon the total shaking table transfer function. The sensitivity results reveal: (a) a potential strong dynamic interaction between the oil column in the actuator and the payload, and (b) the very important effect of the servovalve time delay upon the total shaking table transfer function. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a passive vertical quasi‐zero‐stiffness vibration isolator intended for relatively small objects. The present isolator has features of compactness, long stroke, and adjustability to various load capabilities. To realize these features, we use constant‐force springs, which sustain constant load regardless of their elongation, and propose a variable ellipse curve mechanism that is inspired by the principle of ellipsographs. The variable ellipse curve mechanism can convert the restoring force of the horizontally placed constant‐force springs to the vertical restoring force of the vibration isolator. At the same time as converting the direction, the vertical restoring force can be adjusted by changing the ratio of the semi‐minor axis to the semi‐major one of the ellipse. In this study, a prototype of a class of quasi‐zero‐stiffness vibration isolator with the proposed variable ellipse curve mechanism is created. Shaking table tests are performed to demonstrate the efficacy of the present mechanism, where the prototype is subjected to various sinusoidal and earthquake ground motions. It is demonstrated through the shaking table tests that the prototype can reduce the response acceleration within the same specified tolerance even when the mass of the vibration isolated object is changed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Real‐time substructuring is a method of dynamically testing a structure without experimentally testing a physical model of the entire system. Instead the structure can be split into two linked parts, the region of particular interest, which is tested experimentally, and the remainder which is tested numerically. A transfer system, such as a hydraulic actuator or a shaking table, is used to impose the displacements at the interface between the two parts on the experimental substructure. The corresponding force imposed by the substructure on the transfer system is fed back to the numerical model. Control of the transfer system is critical to the accuracy of the substructuring process. A study of two controllers used in conjunction with the University of Bristol shaking table is presented here. A proof‐of‐concept one degree‐of‐freedom mass–spring–damper system is substructured such that a portion of the mass forms the experimental substructure and the remainder of the mass plus the spring and the damper is modelled numerically. Firstly a linear controller is designed and tested. Following this an adaptive substructuring strategy is considered, based on the minimal control synthesis algorithm. The deleterious effect of oil‐column resonance common to shaking tables is examined and reduced through the use of filters. The controlled response of the experimental specimen is compared for the two control strategies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Experimental results concerning the earthquake response of a marble model of a classical column are reported herein. The model was a 1: 3 scale replica of a column of the Parthenon on the Acropolis of Athens, made from the same material as the original. Several earthquake motions, scaled appropriately in order to cause significant rocking but no collapse of the column, were used as the excitation. The base motion was applied in plane (in one horizontal and the vertical direction) or in space (in two horizontal and the vertical direction), using the shaking table facility at the Laboratory for Earthquake Engineering of the National Technical University of Athens. It was found that the column might undergo large deformations during the shaking, which are not necessarily reflected by the residual displacements at the end of it. For planar excitations, significant out‐of‐plane displacements can happen, triggered by the inevitable imperfections of the specimen. It was also verified that the response is very sensitive, even to small changes of the geometry or the input motion parameters. For this reason, the experiments were not repeatable and ‘identical’ experiments produced different results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.  相似文献   

13.
风电塔是一种顶部有较大偏心质量的高耸薄壁悬臂结构,以某1.5MW水平轴三叶片风电塔为研究对象,重点关注风电塔振动台试验缩尺模型设计。根据量纲分析理论和相似条件,基于模型质量分布和刚度分布等效原则,设计模型塔筒截面及附加质量,保证模型与原型结构自振频率和振型相似。通过对比分析模型动力特性测试结果与原型实测结果,验证了该模型设计方法的合理性,可为同类型风电塔振动台试验设计提供参考与依据。针对该柔性对称高塔模型在动力特性测试中出现的正交耦合振动及拍振现象也进行了详细阐述。  相似文献   

14.
为研究地震荷载作用下桩基-土-核电结构的抗震性能及土结动力反应规律,对拟开展的地震模拟振动试验模型进行数值计算分析。核电工程结构上部质量大和刚度大,试验模型不同于一般的工程结构,为检验振动台试验模型设计、传感器布设方案,对试验模型进行了数值模拟。数值模拟以单端承桩为研究对象,计算了上部结构质量和刚度变化时,在脉冲荷载及基于RG1.60谱人工合成地震动作用下桩身的地震反应规律。数值模拟表明:在水平地震动作用下,桩身剪力和弯矩包络线呈"X"状分布,桩底和顶处剪力弯矩较大;上部结构质量越大,桩身的剪力与弯矩越大;上部结构的刚度越大,桩身的剪力与弯矩越小;随着上部结构质量的增大和刚度的减小,反弯点逐渐向桩顶移动。桩顶发生最大位移时所对应的桩身挠度随着上部结构质量的增加而增大并且随着上部结构刚度的增大而减小。土层分界面处,桩身内力发生突变。此外,在脉冲荷载输入下,桩身反弯点位置与输入荷载的周期有关。计算结果为振动台试验模型设计提供了理论依据。  相似文献   

15.
钢管混凝土边框内藏钢板剪力墙振动台试验研究   总被引:2,自引:1,他引:1  
进行了4个钢板剪力墙模型的模拟地震振动台试验,其中2个模型为钢管混凝土边框钢板剪力墙,高宽比分别为1.7和3.2;2个模型为钢管混凝土边框内藏钢板剪力墙,高宽比分别为1.7和3.2.试验中输人Taft地震动,测试了各试件在不同峰值加速度下的时程地震反应和动力特性,分析了剪力墙的破坏特征.研究表明:钢管混凝土边框内藏钢板...  相似文献   

16.
土-桩-钢结构-TLD系统振动台模型试验研究   总被引:2,自引:0,他引:2  
通过系列振动台模型试验,研究土-结构相互作用对结构TLD减震控制影响。文中首先提出试验模型设计中应考虑的几个主要问题及解决方法,然后介绍土-桩基础-钢结构-TLD相互作用体系的试验成果,分析TLD的减震效果,最后与刚性地基上钢结构TLD减震试验结果相比较,揭示土-结构相互作用对TLD减震效率的影响特点。试验结果表明:土-结构相互作用使得TLD减震效率降低,这一削减作用受到输入地震动的频谱特性和强度的影响。因此,对于建在土层场地上的结构进行TLD减震设计时,应充分重视工程场地条件和地震动特性等实际情况。  相似文献   

17.
本文在此前一系列有关新型电磁驱动AMD控制系统力学建模、性能试验和控制策略研究的基础上,进行了结构地震响应控制的小型振动台试验研究。首先,针对配置了电磁驱动AMD控制系统的Quanser标准两层剪切型框架结构模型,建立了无控计算模型,通过正弦扫频试验验证了模型参数,从而为结构振动主动控制试验研究提供了准确的被控对象模型;其次,设计了电磁驱动AMD控制系统基于极点配置控制算法的试验控制策略和状态观测器,通过数值分析验证了状态观测器估计结果的准确性;最后,在完成以上各项准备工作的基础上,分别对结构输入了典型Benchm ark标准地震动,进行振动台试验,试验结果表明电磁驱动AMD控制系统对结构的地震响应具有显著的控制效果,验证了该新型系统应用于结构振动控制的有效性和可行性。  相似文献   

18.
A particle tuned mass damper (PTMD), which is a creative integration of a traditional tuned mass damper and an efficient particle damper in the vibration control area, is proposed. This paper presents a comprehensive study that involves experimental, analytical, and computational approaches. The vibration control effects of a PTMD that is attached to a five‐story steel frame under seismic input are investigated by a series of shaking table tests. The influence of some parameters (auxiliary mass ratio, gap clearance, mass ratio of particles to the total auxiliary mass, frequency characteristics, and amplitude level of the input) is explored, and the performance of the PTMD with/without buffered material is compared. The experimental results show that the PTMD can achieve significant damping effects under seismic excitations, and the bandwidth of the suppression frequency is expanded, showing the device's robustness and control efficiency. In addition, an approximately analytical solution that is based on the concept of an equivalent single‐particle damper is presented, and the method to determine the corresponding system parameters is introduced. A comparative study between experimental and numerical results is conducted to verify the feasibility and accuracy of this analytical model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
土-结构相互作用效应对结构基底地震动影响的试验研究   总被引:3,自引:0,他引:3  
利用土与结构动力相互作用振动台模型试验数据,通过各种试验工况下土层表面与基础表面加速度反应的比较,深入探讨了土与结构动力相互作用效应对高层建筑结构基底地震动的影响。从输入地震动频谱特性、输入地震动强度水平和上部结构动力特性3个方面详细分析了与SSI效应对高层建筑基底震动影响程度有关的一些因素。结果表明:SSI效应对高层建筑基底地震动的影响与输入地震波的动力特性有很大关系。在地震动的频谱成分方面,SSI效应对高层建筑基底地震动的影响主要体现为土层表面和基础表面在与输入地震动卓越频率相近处的频谱成分有较大差异;SSI效应对高层建筑基底地震动的影响程度随着输入加速度峰值水平的增加而减小;在某一特定地震波作用下,当上部结构的振动频率与地震地面运动的卓越频率相近时,SSI效应对高层建筑基底地震动的影响较为强烈。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号