首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Influence of rock mass strength on the erosion rate of alpine cliffs   总被引:1,自引:0,他引:1  
Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first‐order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Sea stacks are common and striking coastal landforms, but few details are known about how, how quickly, and under what conditions they form. We present numerical and analytical models of sea stack formation due to preferential erosion along a pre‐existing headland to address these basic questions. On sediment‐rich rocky coasts, as sea cliffs erode and retreat, they produce beach sediment that is distributed by alongshore sediment transport and controls future sea cliff retreat rates. Depending on their width, beaches can encourage or discourage sea cliff erosion by acting either as an abrasive tool or a protective cover that dissipates wave energy seaward of the cliff. Along the flanks of rocky headlands where pocket beaches are often curved and narrow due to wave field variability, abrasion can accelerate alongshore‐directed sea cliff erosion. Eventually, abrasion‐induced preferential erosion can cut a channel through a headland, separating it from the mainland to become a sea stack. Under a symmetrical wave climate (i.e. equal influence of waves approaching the coastline from the right and from the left), numerical and analytical model results suggest that sea stack formation time and plan‐view size are proportional to preferential erosion intensity (caused by, for example, abrasion and/or local rock weakness from joints, faults, or fractures) and initial headland aspect ratio, and that sea stack formation is discouraged when the sediment input from sea cliff retreat is too high (i.e. sea cliffs retreat quickly or are sand‐rich). When initial headland aspect ratio is too small, and the headland is ‘rounded’ (much wider in the alongshore direction at its base than at its seaward apex), the headland is less conducive to sea stack formation. On top of these geomorphic and morphologic controls, a highly asymmetrical wave climate decreases sea stack size and discourages stack formation through rock–sediment interactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Sea cliff morphology and erosion rates are modulated by several factors, including rock control that reflects both lithology and rock structure. Erosion is anticipated to preferentially exploit ‘fractures’, broadly meant as any discontinuity in an otherwise continuous medium, where the rock mass is weakest. Unpicking the direct control of such fractures on the spatial and temporal pattern of erosion remains, however, challenging. To analyse how such fractures control erosion, we monitored the evolution of a 400 m-long stretch of highly structured sedimentary cliffs in Socoa, Basque Country, France. The rock is known as the Socoa flysch formation. This formation combines decimetre-thick turbidites composed of repeat triplets of medium to strong calcareous sandstone, laminated siltstones and argillaceous marls. The sequence plunges at 45° into the sea with a shore-parallel strike. The cliffs are cross-cut by two normal and reverse fault families, with 10–100 m alongshore spacing, with primary and secondary strata-bound fractures perpendicular to the bedding, which combined delimit the cliff rock mass into discrete blocks that are exploited by the erosion process. Erosion, and sometimes plucking, of such beds and blocks on the cliff face was monitored using ground-based structure-from-motion (SfM) photogrammetry, over the course of 5.7 years between 2011 and 2017. To compare with longer time change, cliff-top retreat rate was assessed using SfM-orthorectified archive aerial photographs spanning 1954–2008. We show that the 13,250 m2 cliff face released 4500 blocks exceeding 1.45 × 10−3 m3, removing a total volume of 170 m3. This equates to an average cliff erosion rate of 3.4 mm/year, which is slightly slower than the 54-year-long local cliff-top retreat (10.8 ± 1.8 mm/year). The vertical distribution of erosion reflects the height of sea water inundation, where the maximum erosion intensity occurs ca. 2 m above high spring-tide water level. Alongshore, the distribution of rockfall scars is concentrated along bed edges bounding cross-cutting faults; the extent of block detachment is controlled by secondary tectonic joints, which may extend through several beds locally sharing similar mechanical strength; and rockfall depth is always a multiple of bed thickness. Over the longer term, we explain block detachment and resultant cliff collapse as a cycle. Erosion nucleates on readily exploitable fractures but elsewhere, the sea only meets defect-free medium-strong to strong rock slabs offering few morphological features for exploitation. Structurally delimited blocks are quarried, and with sufficient time, carve semi-elliptic scars reaching progressively deeper strata to be eroded. Lateral propagation of erosion is directed along mechanical weaknesses in the bedding, and large episodic collapses affect the overhanging slabs via sliding on the weak marl beds. Collapse geometry is confined to one or several triplets of turbidite beds, but never reaches deeper into the cliff than the eroded depth at the foot. We contend that this fracture-limited model of sea-cliff erosion, inferred from the Socoa site dynamics and its peculiar sets of fractures, applies more broadly to other fractured cliff contexts, albeit with site-specific geometries. The initiation of erosion, the propagation of incremental block release and the ultimate full failure of the cliff, have each been shown to be fundamentally directly controlled by structure, which remains a vital control in understanding how cliffed coasts have changed in the past and will change in the future.  相似文献   

5.
High-resolution rockfall inventories captured at a regional scale are scarce. This is partly owing to difficulties in measuring the range of possible rockfall volumes with sufficient accuracy and completeness, and at a scale exceeding the influence of localized controls. This paucity of data restricts our ability to abstract patterns of erosion, identify long-term changes in behaviour and assess how rockfalls respond to changes in rock mass structural and environmental conditions. We have addressed this by developing a workflow that is tailored to monitoring rockfalls and the resulting cliff retreat continuously (in space), in three-dimensional (3D) and over large spatial scales (>104 m). We tested our approach by analysing rockfall activity along 20.5 km of coastal cliffs in North Yorkshire (UK), in what we understand to be the first multi-temporal detection of rockfalls at a regional scale. We show that rockfall magnitude–frequency relationships, which often underpin predictive models of erosion, are highly sensitive to the spatial extent of monitoring. Variations in rockfall shape with volume also imply a systemic shift in the underlying mechanisms of detachment with scale, leading us to question the validity of applying a single probabilistic model to the full range of rockfalls observed here. Finally, our data emphasize the importance of cliff retreat as an episodic process. Going forwards, there will a pressing need to understand and model the erosional response of such coastlines to rising global sea levels as well as projected changes to winds, tides, wave climates, precipitation and storm events. The methodologies and data presented here are fundamental to achieving this, marking a step-change in our ability to understand the competing effects of different processes in determining the magnitude and frequency of rockfall activity and ultimately meaning that we are better placed to investigate relationships between process and form/erosion at critical, regional scales. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

6.
Our understanding of sea-cliff erosion processes and their response to recent and/or projected environmental changes such as sea-level rise, climate change and anthropogenic development hinges on our ability to quantify sea-cliff retreat rates and their variability through time. Here, we focus on Israel's Mediterranean ‘Sharon’ sea-cliff as a case study for examining the significance of recent short-term (i.e. annual to decadal) cliff-top retreat rates that appear to exceed longer-term rates of ‘background’ (i.e. centennial to millennial) retreat by 1–2 orders of magnitude. We demonstrate that an inherent sampling bias in rate estimates inferred from observation intervals shorter than process episodicity can also explain such a pattern. This potential ambiguity leads to a striking paradox where despite highly accurate and robust documentation of recent cliff-top retreat, such as that obtained from aerial photographs and/or instrumental surveys, the short-term retreat rates of episodically retreating sea cliffs remain poorly constrained. To address this key data gap along the Sharon sea cliff we employed a sediment budget approach that focuses on quantifying the continuous wave scouring of cliff-collapsed material from the shore platform as a rate-limiting process for episodic retreat of the cliff above. We used four high-resolution (0.5 m/pixel) airborne LiDAR data sets acquired between 2006 and 2015 to determine short-term maximum retreat rates of up to ~0.08 m/yr during this nine-year period. These modern retreat rates compare to the cliff's background retreat rate of 0.03 to 0.09 m/yr since the mid-Holocene, as determined herein from multiple geologic and archeological observations. Our results demonstrate that previously reported twentieth century cliff-top retreat rates for this sea cliff, which range up to values of several meters per year, are biased and that sea-cliff erosion rates have not yet been significantly impacted by recent environmental changes in the eastern Mediterranean basin, such as the restriction of sediment supply following emplacement of the Nile's Aswan dam system. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Development of a notch at the base of a cliff reduces cliff stability and often induces a collapse. Pleistocene limestone coastal cliffs of elevation 5?m in Kuro‐shima, Ryukyu Islands, have a prominent notch with a depth of 3–4?m at their bases. Around these coastal cliffs, collapses different from previous studies of cliff collapses in the Ryukyu Islands were found; collapses in Kuro‐shima have a horizontal failure surface. The horizontal failure surface, situated at the height of the failure surface corresponding to the retreat point of the notch, is bounded by vertical joints cutting the whole cliff and the reef flat in front of the cliff. Two types of horizontal failure surface were found, triangular and quadrangular; the distinction appears to depend on the angle between the vertical joints and the front face of the cliff. Prior to collapse, these cliffs appear to have been separated from the adjacent cliffs by the development of vertical joints. Consequently, a cliff that will collapse can be identified in advance; cliff instability is strongly dependent on the development of a notch. To study the effect of notch development on cliff collapse, the notch depth at which collapse occurs was calculated using stability analysis. Instability of a cliff increases with notch depth; collapse occurs at the horizontal failure surface when the ratio of the notch depth to the seaward length of the cliff is approximately 0·5–0·7 for a triangular failure surface, and 0·7–0·9 for a quadrangular failure surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Research indicates that the aeolianite (Kurkar) cliffs along the Israeli Mediterranean coastline have continuously retreated eastward during the last few decades. There seems to be no dispute among Earth scientists regarding the general trend of cliff retreat. However the majority of papers displaying cliff retreat rates are based upon comparison of aerial photographs. Their lack of advanced geometric measurement methods causes a high margin of error. Public attention is focused upon the Beit‐Yannay coastal cliff since private homes are located along the southern section of the cliff crest. The current research compares the historic location of the cliff crest edge at Beit‐Yannay as observed in a series of aerial photographs taken during the period 1918–2000. Quantitative measurement methods included applications of satellite geodesy and digital photogrammetry and mapping. Research results offer quantitative, consecutive and highly accurate data regarding retreat rates over a relatively long period of 82 years. It is concluded that: 1. Annual average cliff retreat rates of the cliff crest is 20 cm/year. 2. Categorization of the study time span reveals periods displaying varying retreat rates such as 27 cm/year during 1918–1946, 21 cm/year during 1946–1973 and 10 cm/year during 1973–2000. 3. Maximum retreat distances of the cliff crest, over the study period were found to be approximately 25 m along the northern, lowest section of the cliff. Minimum distances of 11 m were identi?ed at the highest, southern section of the cliff. 4. The eolianite (Kurkar) cliffs along the Israeli Mediterranean coast throughout the 20th century have been an important source of sediment, contributing approximately 24 × 106 m3 of sediments to the sediment balance of Israeli beaches. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
Cosmogenic 10Be concentrations in exposed bedrock surfaces and alluvial sediment in the northern Flinders Ranges reveal surprisingly high erosion rates for a supposedly ancient and stable landscape. Bedrock erosion rates increase with decreasing elevation in the Yudnamutana Catchment, from summit surfaces (13·96 ± 1·29 and 14·38 ± 1·40 m Myr?1), to hillslopes (17·61 ± 2·21 to 29·24 ± 4·38 m Myr?1), to valley bottoms (53·19 ± 7·26 to 227·95 ± 21·39 m Myr?1), indicating late Quaternary increases to topographic relief. Minimum cliff retreat rates (9·30 ± 3·60 to 24·54 ± 8·53 m Myr?1) indicate that even the most resistant parts of cliff faces have undergone significant late Quaternary erosion. However, erosion rates from visibly weathered and varnished tors protruding from steep bedrock hillslopes (4·17 ± 0·42 to 14·00 ± 1·97 m Myr?1) indicate that bedrock may locally weather at rates equivalent to, or even slower than, summit surfaces. 10Be concentrations in contemporary alluvial sediment indicate catchment‐averaged erosion at a rate dominated by more rapid erosion (22·79 ± 2·78 m Myr?1), consistent with an average rate from individual hillslope point measurements. Late Cenozoic relief production in the Yudnamutana Catchment resulted from (1) tectonic uplift at rates of 30–160 m Myr?1 due to range‐front reverse faulting, which maintained steep river gradients and uplifted summit surfaces, and (2) climate change, which episodically increased both in situ bedrock weathering rates and frequency–magnitude distributions of large magnitude floods, leading to increased incision rates. These results provide quantitative evidence that the Australian landscape is, in places, considerably more dynamic than commonly perceived. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
This paper addresses a series of geomorphic questions relating to large‐scale (> 1 km), long‐term (100 – 1,000 years) coastal planshape evolution. Previous research on soft‐cliff coasts has recognised the role of protective fronting beach volumes on reducing rates of cliff toe retreat. However, it is the maintenance of this critical threshold that ultimately determines two contrasting modes of shoreline behaviour: Mode A, in which there is little beach sediment and shoreline evolution is controlled by material strength; and, Mode B, when ample beach sediment means that shoreline evolution is controlled by longshore sediment transport. Here we use a numerical model (SCAPE) to investigate temporal and spatial changes in beach volume on a broader range of feedbacks than considered in previous models. The transition between Mode A and Mode B coasts is defined by relative sediment inputs to outputs and used to explore how these contrasting modes control the evolution of an initial linear frontage exhibiting longshore changes in cliff lithology (material resistance and the proportion of beach grade material in the eroded bedrock). Under Mode A, relative changes in material resistance result in long term heterogeneous rates of retreat, which result in the development of persistent headland and embayment features. However, under Mode B, feedbacks between coastal planshape, longshore sediment transport, beach volume and wave energy result in steady state retreat rates regardless of longshore variations in resistance. Results are compared and contrasted to previous simulations and site specific examples and a conceptual model of Mode A and Mode B interactions presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low‐order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand‐replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low‐order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In meandering rivers cut into bedrock, erosion across a channel cross‐section can be strongly asymmetric. At a meander apex, deep undercutting of the outer bank can result in the formation of a hanging cliff (which may drive hillslope failure), whereas the inner bank adjoins a slip‐off slope that connects to the hillslope itself. Here we propose a physically‐based model for predicting channel planform migration and incision, point bar and slip‐off slope formation, bedrock abrasion, the spatial distribution of alluvial cover, and adaptation of channel width in a mixed bedrock‐alluvial channel. We simplify the analysis by considering a numerical model of steady, uniform bend flow satisfying cyclic boundary conditions. Thus in our analysis, ‘sediment supply’, i.e. the total volume of alluvium in the system, is conserved. In our numerical simulations, the migration rate of the outer bank is a specified parameter. Our simulations demonstrate the existence of an approximate state of dynamic equilibrium corresponding to a near‐solution of permanent form in which a bend of constant curvature, width, cross‐sectional shape and alluvial cover distribution migrates diagonally downward at constant speed, leaving a bedrock equivalent of a point bar on the inside of the bend. Channel width is set internally by the processes of migration and incision. We find that equilibrium width increases with increasing sediment supply, but is insensitive to outer bank migration rate. The slope of the bedrock point bar varies inversely with both outer bank migration rate and sediment supply. Although the migration rate of the outer bank is externally imposed here, we discuss a model modification that would allow lateral side‐wall abrasion to be treated in a manner similar to the process of bedrock incision. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Those factors controlling the weathering and erosion of sandstone on the field scale are still not well understood. In this study, a specific sandstone overhang (and its surroundings) with artificially induced and extremely high erosion rates was subjected to a complex investigation. Contrast between the erosion rate of the wet and dry portions of the same cliff enabled isolation of the factors responsible for rapid sandstone retreat. Erosion rates, moisture, and salt content, as well as suction were monitored in the field. Mineral phases and water chemistry were analyzed. The measurement of tensile strength, laboratory frost weathering tests, and numerical modeling of stress were performed. The acquired data show that an increase of moisture content in pores in the area of the studied overhang decreased tensile strength of the sandstone to 14% of its dry value, and increases the sandstone weathering and erosion rate, by nearly four orders of magnitude, compared to the same sandstone under natural moisture conditions outside of the cliff area. Consequently, frost weathering, in combination with wetting weakening was found to play a major role in weathering/erosion of the sandstone cliff and overhang. Frost weathering rate in both the laboratory and field increases up to 15 times with decreasing gravity‐induced stress. The results also indicate that sandstone landforms in temperate climates may potentially develop very rapidly if the pore space is nearly saturated with water, and will later remain relatively stable when the moisture content decreases. As a general implication, it is suggested that overhangs in Central Europe (and elsewhere) might be the result of rapid frost weathering of nearly saturated sandstone during the Last Glacial. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, we explored the spatial and temporal relations between boulders and their original in-situ locations on sandstone bedrock cliffs. This was accomplished by combining field observations with dating methods using cosmogenic isotopes (10Be and 14C) and optically stimulated luminescence (OSL). Our conclusions bear both on the landscape evolution and cliff retreat process in the hyperarid region of Timna and on the methodology of estimating exposure ages using cosmogenic isotopes.

We recognize three discrete rock fall events, at 31 ka, 15 ka, and 4 ka. In this hyperarid region, the most plausible triggering mechanism for rock fall events is strong ground acceleration caused by earthquakes generated by the nearby Dead Sea fault (DSF). Our record, however, under represents the regional earthquake record implying that ongoing development of detachment cracks prior to the triggering event might be slower than the earthquake cycle.

Cliff retreat rates calculated using the timing of rock fall events and estimated thickness of rock removed in each event range between 0.14 m ky− 1 and 2 m ky− 1. When only full cycles are considered, we derive a more realistic range of 0.4 m ky− 1 to 0.7 m ky− 1. These rates are an order of magnitude faster than the calculated rate of surface lowering in the area. We conclude that sandstone cliffs at Timna retreat through episodic rock fall events that preserve the sharp, imposing, landscape characteristic to this region and that ongoing weathering of the cliff faces is minor.

A 10%–20% difference in the 10Be concentrations in samples from matching boulder and cliff faces that have identical exposure histories and are located only a few meters apart indicates that cosmogenic nuclide production rates are sensitive to shielding and vary spatially over short distances. However, uncertainties associated with age calculations yielded boulder and matching cliff face ages that are similar within 1 σ . The use of external constraints in the form of field relations and OSL dating helped to establish each pair's age. The agreement between calculated 14C and 10Be ages indicates that the accumulation of 10Be at depth by the capture of slow deep-penetrating muons was properly accounted for in the study.  相似文献   


18.
This paper investigates the processes involved in unconsolidated cliff recession using LiDAR surveys (2005, 2010 and 2013) and aerial photographs (1964–2012) at Pointe‐au‐Bouleau, on the north shore of the St. Lawrence estuary, in eastern Canada. The high lithostratigraphic variability of the sediments allowed for the identification of stratigraphic and lithological variables that explain the evolution of coastal cliffs. Space‐for‐time substitution was also used to assess how lithostratigraphy controls the evolution of emerged glaciomarine coastal cliffs over decadal to centennial timescales. This case study presents new quantitative data that contributes to a better understanding of the role of sediment architecture, stratigraphy and geomorphology on coastal evolution. The methodological approach includes the development of a new conceptual model suitable for identifying erosion on cliff coastlines. The high spatial resolution methodology (<5 cm) used herein demonstrates the need for further research using LiDAR data in order to quantify the processes involved in the evolution of coastal cliffs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Mesas are ubiquitous landforms in arid and semiarid regions and are often characterized by horizontal stratified erodible rocks capped by more resistant strata. The accepted conceptual model for mesa evolution and degradation considers reduction in the width of the mesa flat‐top plateau due to cliff retreat but ignores possible denudation of the mesa flat‐top and the rates and mechanism of erosion. In this study we examine mesas in the northeastern hyperarid Negev Desert where they appear in various sizes and morphologies and represent different stages of mesa evolution. The variety of mesas within a single climatic zone allows examination of the process of mesa evolution through time. Two of the four sites examined are characterized by a relatively wide (200–230 m) flat‐top and a thick caprock whereas the other two are characterized by a much narrower remnant flat‐top (several meters) and thinner caprock. We use the concentration of the cosmogenic nuclide 10Be for: (a) determining the chronology of the various geomorphic features associated with the mesa; and (b) understanding geomorphic processes forming the mesa. The 10Be data, combined with field observations, suggest a correlation between the width of flat‐top mesa and the denudation and cliff retreat rates. Our results demonstrate that: (a) cliff retreat rates decrease with decreasing width of the flat‐top mesa; (b) vertical denudation rates increase with decreasing width of the flat‐top mesa below a critical value (~60 m, for the Negev Desert); (c) the reduction in the width of the flat‐top mesa is driven mainly by cliff retreat accompanied by extremely slow vertical denudation rate which can persist for a very long time (>106 Ma); and (d) when the width of the mesa decreases below a certain threshold, its rate of denudation increases dramatically and mesa degradation is completed in a short time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号