首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principles of operation and force–displacement relationships of three novel spherical sliding isolation bearings are developed in this paper. These bearings are completely passive devices, yet exhibit adaptive stiffness and adaptive damping. That is, the stiffness and damping change to predictable values at calculable and controllable displacement amplitudes. The primary benefit of adaptive behavior is that a given isolation system can be separately optimized for multiple performance objectives and/or multiple levels of ground shaking. With the devices presented here, this is accomplished using technology that is inherently no more complex than what is currently used by the civil engineering profession. The internal construction consists of various concave surfaces and behavior is dictated by the different combinations of surfaces upon which sliding can occur over the course of motion. As the surfaces upon which sliding occurs change, the stiffness and effective friction change accordingly. A methodology is presented for determining which surfaces are active at any given time based on the effective radius of curvature, coefficient of friction and displacement capacity of each sliding surface. The force–displacement relationships and relevant parameters of interest are subsequently derived based on the first principles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
While isolation can provide significantly enhanced performance compared to fixed‐base counter parts in design level or even maximum considered level earthquakes, there is still uncertainty over the performance of isolation systems in extreme events. Researchers have looked at component level stability of rubber bearings and on the effect of moat impact on behavior of structures isolated on general bilinear isolators. However, testing of triple friction pendulum (TFP) sliding bearings has not been done dynamically or incorporated into a building system. Here, one‐third scale laboratory tests were conducted to on a 2‐story 2‐bay TFP‐isolated structure. Input motions were increasingly scaled until failure occurred at the isolation level. As the superstructure was designed with a yield force equivalent to the force of the bearing just at their ultimate displacement capacity, there was minimal yielding. A numerical model is presented to simulate the isolated building up to and including bearing failure. Forces transferred to the superstructure in extreme motions are examined using both experimental and numerical data. Additionally, the effect of the hardening stage of the TFP bearing is evaluated using the numerical model, finding slight benefits.  相似文献   

3.
The double concave Friction Pendulum (DCFP) bearing is an adaptation of the well‐known single concave Friction Pendulum bearing. The principal benefit of the DCFP bearing is its capacity to accommodate substantially larger displacements compared to a traditional FP bearing of identical plan dimensions. Moreover, there is the capability to use sliding surfaces with varying radii of curvature and coefficients of friction, offering the designer greater flexibility to optimize performance. This paper describes the principles of operation of the bearing and presents the development of the force–displacement relationship based on considerations of equilibrium. The theoretical force–displacement relationship is then verified through characterization testing of bearings with sliding surfaces having the same and then different radii of curvature and coefficients of friction. Lastly, some practical considerations for analysis and design of DCFP bearings are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The best known model for numerically simulating the hysteretic behavior of various structural components is the bilinear hysteretic system. There are two possible mechanical formulations that correspond to the same bilinear model from a mathematical viewpoint. The first one consists of a linear elastic spring connected in series with a parallel system comprising a plastic slider and a linear elastic spring, while the second one comprises a linear elastic spring connected in parallel with an elastic-perfectly plastic system. However, the bilinear hysteretic model is unable to describe either softening or hardening effects in these components. In order to account for this, the bilinear model is extended to a trilinear one. Thus, two trilinear hysteretic models are developed and numerically tested, and the analysis shows that both exhibit three plastic phases. More specifically, the first system exhibits one elastic phase, while the second one exhibits two elastic phases according to the level of strain amplitude. Next, the change of slope between the plastic phases in unloading does not occur at the same displacement level in the two models. Furthermore, the dissipated energy per cycle in the first trilinear model, as proven mathematically and explained physically, decreases in the case of hardening and increases in the case of softening, while in the second trilinear model the dissipated energy per cycle remains unchanged, as is the case with the bilinear model. Numerical examples are presented to quantify the aforementioned observations made in reference to the mechanical behavior of the two trilinear hysteretic models. Finally, a set of cyclic shear tests over a wide range of strain amplitudes on a high damping rubber bearing is used in the parameter identification of the two different systems, namely (a) trilinear hysteretic models of the first type connected in parallel, and (b) trilinear hysteretic models of the second type also connected in parallel. The results show that the complex nonlinear shear behavior of high damping rubber bearings can be correctly simulated by a parallel system which consists of only one component, namely the trilinear hysteretic system of the first type. The second parallel system was not able to describe the enlargement of the dissipated hysteresis area for large strain amplitudes.  相似文献   

5.
This paper examines the rocking response and stability of rigid blocks standing free on an isolated base supported: (a) on linear viscoelastic bearings, (b) on single concave and (c) on double concave spherical sliding bearings. The investigation concludes that seismic isolation is beneficial to improve the stability only of small blocks. This happens because while seismic isolation increase the ‘static’ value of the minimum overturning acceleration, this value remains nearly constant as we move to larger blocks or higher frequency pulses; therefore, seismic isolation removes appreciably from the dynamics of rocking blocks the beneficial property of increasing stability as their size increases or as the excitation pulse period decreases. This remarkable result suggests that free‐ standing ancient classical columns exhibit superior stability as they are built (standing free on a rigid foundation) rather than if they were seismically isolated even with isolation system with long isolation periods. The study further confirms this finding by examining the seismic response of the columns from the peristyle of two ancient Greek temples when subjected to historic records. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Base isolation has been established as the seismic design approach of choice when it comes to protecting nonstructural contents. However, while this protection technology has been widely shown to reduce seismic demands on attached oscillatory equipment and contents (EC), its effectiveness in controlling the response of freestanding EC that are prone to sliding has not been investigated. This study examines the seismic behavior of sliding EC inside base‐isolated buildings subjected to broadband ground motions. The effect of isolation system properties on the response of sliding EC with various friction coefficients is examined. Two widely used isolation models are considered: viscously damped linear elastic and bilinear. The study finds isolation to be generally effective in reducing seismic demands on sliding EC, but it also exposes certain situations where isolation in fact increases demands on EC, most notably for low friction coefficients and high earthquake intensities. Damping at the isolation level is effective in controlling the EC sliding displacements, although damping over about 20% is found to be superfluous. The study identifies a physically motivated dimensionless intensity measure and engineering demand parameter for sliding equipment in base‐isolated buildings subjected to broadband ground motions. Finally, the paper presents easy‐to‐use design fragility curves and an example that illustrates how to use them. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The seismic response of a multi‐span continuous bridge isolated with novel superelastic‐friction base isolator (S‐FBI) is investigated under near‐field earthquakes. The isolation system consists of a flat steel‐Teflon sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. The key design parameters of an S‐FBI system are the natural period of the isolated bridge, the yielding displacement of the SMA device, and the friction coefficient of the sliding bearings. The goal of this study is to obtain optimal values for each design parameter by performing sensitivity analysis of a bridge isolated by an S‐FBI system. First, a three‐span continuous bridge is modeled as two‐degrees‐of‐freedom with the S‐FBI system. A neuro‐fuzzy model is used to capture rate‐ and temperature‐dependent nonlinear behavior of the SMA device. Then, a set of nonlinear time history analyses of the isolated bridge is performed. The variation of the peak response quantities of interest is shown as a function of design parameters of the S‐FBI system and the optimal values for each parameter are evaluated. Next, in order to assess the effectiveness of the S‐FBI system, the response of the bridge isolated by the S‐FBI system is compared with the response of the non‐isolated bridge and the same bridge isolated by pure‐friction (P‐F) sliding isolation system. Finally, the influence of temperature variations on the performance of the S‐FBI system is evaluated. The results show that the optimum design of a bridge with the S‐FBI system can be achieved by a judicious specification of design parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Although the behavior of friction sliding bearings is well understood, the failure behavior has not been thoroughly investigated. However, predicting and understanding the failure of bearings is an important key in designing isolated structures to minimize their collapse in extreme events, and thus, this study is critical. Because of its relative simplicity and particular availability in certain markets, the failure of the double friction pendulum (DFP) bearing at its physical displacement limit is investigated. The bearing is modeled with a rigid body model including inertia for each of the bearing components. A nonlinear viscoelastic impact model is included to simulate the impact between bearing components. As isolation systems are particularly vulnerable to long‐period excitations, analytical pulses are used as input excitations to investigate the influences of pulse parameters on the failure of DFP. The influences of DFP design parameters are investigated as well. To confirm that the response to the analytical pulses correctly represents the behavior under long‐period ground motions, wavelet analysis to is performed on 14 pairs of pulse‐type ground motion records to extract their pulses, and the failure prediction made from the extracted analytical pulse is compared with the failure from the real ground motions. It is found that using the extracted pulses provides a good estimation for the failure prediction of the ground motions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
While the performance of sliding isolators has been extensively validated under typical levels of ground motion, there have been very few experimental studies on the extreme behavior of sliding isolation bearings when the displacement limit is reached. However, to appropriately design isolated systems, from selecting the displacement capacity of the bearing to sizing the superstructure members, the behavior of the bearing as it reaches, and in some cases exceeds, the displacement limit should be well understood. A series of shake table tests to investigate the extreme behavior of double pendulum sliding bearings under strong ground motions were conducted at McMaster University. One major difference in sliding bearings around the world is how the motion of the bearing is restrained at the bearing's displacement capacity. Scaled bearings with four different types of restraining rim designs were included, representing typical sliding restraining rims found in Europe, Japan, and the United States. Experimental observation shows that the restraining rim has a significant influence on the extreme behavior of sliding isolation bearing. Key response parameters such as impact force and uplift are evaluated and compared between the different sliding bearing designs. While the bearing with no rim bearing imparts the lowest forces to the superstructure, it loses its functionality at a lower amplitude input than all the other rim types. For the other rim designs, the impact forces are significantly higher but they remained operational although damaged.  相似文献   

10.
This paper describes an experimental program to examine the force–displacement behavior of a class of multi‐spherical sliding bearings. The primary goal of the experiments is to test the validity of the theory developed in a companion paper that describes the behavior of these devices. Experimental work consisted of testing the three primary variations of these bearings in several configurations of different friction and displacement capacities. Most tests were carried out at slow speeds; however, some testing was also conducted at high speed (up to approximately 400 mm/s) to examine the behavior under dynamic conditions. The results of experimental testing were generally found to be in very good agreement with the analytical results. It is shown that the forces and displacements at which transitions in stiffness occur are predictable and therefore controllable in design. Furthermore, the underlying principles of operation were confirmed by the fact that starting and stopping of sliding on the different surfaces occurred as expected from theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper examines the eigenvalues of multi‐span seismically isolated bridges in which the transverse displacement of the deck at the end abutments is restricted. With this constraint the deck is fully isolated along the longitudinal direction, whereas along the transverse direction the deck is a simple‐supported beam at the end abutments which enjoys concentrated restoring forces from the isolation bearings at the center piers. For moderate long bridges, the first natural period of the bridge is the first longitudinal period, while the first transverse period is the second period, given that the flexural rigidity of the deck along the transverse direction shortens the isolation period offered by the bearings in that direction. This paper shows that for isolated bridges longer than a certain critical length, the first transverse period becomes longer than the first longitudinal period despite the presence of the flexural rigidity of the deck. This critical length depends on whether the bridge is isolated on elastomeric bearings or on spherical sliding bearings. This result is also predicted with established commercially available numerical codes only when several additional nodes are added along the beam elements which are modeling the deck in‐between the bridge piers. On the other hand, this result cannot be captured with the limiting idealization of a beam on continuous distributed springs (beam on Wrinkler foundation)—a finding that has practical significance in design and system identification studies. Finally, the paper shows that the normalized transverse eigenperiods of any finite‐span deck are self‐similar solutions that can be represented by a single master curve and are independent of the longitudinal isolation period or on whether the deck is supported on elastomeric or spherical sliding bearings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a non‐linear, kinematic model for triple friction pendulum isolation bearings. The model, which incorporates coupled plasticity and circular restraining surfaces for all sliding surfaces, is capable of capturing bi‐directional behavior and is able to explicitly track the movement of each internal component. The model is general so that no conditions regarding bearing properties, which effect the sequence of sliding stages, are required for the validity of the model. Controlled‐displacement and seismic‐input experiments were conducted using the shake table at the University of California, Berkeley to assess the fidelity of the proposed model under bi‐directional motion. Comparison of the experimental data with the corresponding results of the kinematic model shows good agreement. Additionally, experiments showed that the performance of TFP bearings is reliable over many motions, and the behavior is repeatable even when initial slider offsets are present. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The dynamic analysis of sliding structures is complicated due to the presence of friction. Synchronization of the kinematics of all the isolation bearings is often granted to simplify the task. This, however, may lead to inaccurate prediction of the structural responses under certain circumstances. Stepped structures or continuous bridges with seismic isolation are notable examples where unsynchronized bearing motions are expected. In this paper, a logically simple and numerically efficient procedure is proposed to solve the dynamic problem of sliding systems with unsynchronized support motions. The motion equations for the sliding and non‐sliding modes of the isolated structure are unified into a single equation that is represented as a difference equation in a discrete‐time state‐space form and the base shear forces between the sliding interfaces can be determined through simple matrix algebraic analysis. The responses of the sliding structure can be obtained recursively from the discrete‐time version of the motion equation with constant integration time step even during the transitions between the non‐sliding and sliding phases. Therefore, both accuracy and efficiency in the dynamic analysis of the highly non‐linear system can be enhanced to a large extent. Rigorous assessment of seismic structures with unsynchronized support motions has been carried out for both a stepped structure and a continuous bridge. Effectiveness of friction pendulum bearings for earthquake protection of such structures has been verified. Moreover, evident unsynchronized sliding motions of the friction bearings have been observed, confirming the necessity to deal with each of the bearings independently in the analytical model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Characterizing friction in sliding isolation bearings   总被引:1,自引:1,他引:0       下载免费PDF全文
The force–displacement behavior of the Friction Pendulum? (FP) bearing is a function of the coefficient of sliding friction, axial load on the bearing and effective radius of the sliding surface. The coefficient of friction varies during the course of an earthquake with sliding velocity, axial pressure and temperature at the sliding surface. The velocity and axial pressure on the bearing depend on the response of the superstructure to the earthquake shaking. The temperature at an instant in time during earthquake shaking is a function of the histories of the coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider on the sliding surface. A unified framework accommodating the complex interdependence of the coefficient of friction, sliding velocity, axial pressure and temperature is presented for implementation in nonlinear response‐history analysis. Expressions to define the relationship between the coefficient of friction and sliding velocity, axial pressure, and temperature are proposed, based on available experimental data. Response‐history analyses are performed on FP bearings with a range of geometrical and liner mechanical properties and static axial pressure. Friction is described using five different models that consider the dependence of the coefficient of friction on axial pressure, sliding velocity and temperature. Frictional heating is the most important factor that influences the maximum displacement of the isolation system and floor spectral demands if the static axial pressure is high. Isolation system displacements are not significantly affected by considerations of the influence of axial pressure and velocity on the coefficient of friction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The seismic response of light secondary systems in a building is dependent on the response of the primary structural system to the seismic ground motion with the result that very high accelerations can be induced in such secondary systems. This response can be reduced through the use of aseismic base isolation which is a design strategy whereby the entire building can be decoupled from the damaging horizontal components of seismic ground motion by the use of some form of isolation system. The paper presents a theoretical analysis of the response of light equipment in isolated structures and a parallel experimental programme both of which show that the use of base isolation can not only attenuate the response of the primary structural system but also reduce the response of secondary systems. Thus, the design of equipment and piping in a base-isolated building is very much simpler than that for a conventionally founded structure: inelastic response and equipment-structure interaction need not be considered and multiple support response analysis is rendered unnecessary. Although an isolation system with linear elastic bearings can reduce the acceleration of the structure, it may be accompanied by large relative displacements between the structure and the ground. A system using lead-rubber hysteretic bearings, having a force-displacement relation which is approximately a bilinear loop, can reduce these displacements. A parallel experimental programme was carried out to investigate the response of light equipment in structures isolated using lead-rubber bearings. The experimental results show that these bearings can dissipate energy and limit the displacement and acceleration of the structure but are less effective in reducing the accelerations in the internal equipment. The results of both the analysis and the tests show that base isolation is a very effective method for the seismic protection of light equipment items in buildings.  相似文献   

16.
Because a conventional isolation system with constant isolation frequency is usually a long‐period dynamic system, its seismic response is likely to be amplified in earthquakes with strong long‐period wave components, such as near‐fault ground motions. Seismic isolators with variable mechanical properties may provide a promising solution to alleviate this problem. To this end, in this work sliding isolators with variable curvature (SIVC) were studied experimentally. An SIVC isolator is similar to a friction pendulum system (FPS) isolator, except that its sliding surface has variable curvature rather being spherical. As a result, the SIVC's isolation stiffness that is proportional to the curvature becomes a function of the isolator displacement. By appropriately designing the geometry of the sliding surface, the SIVC is able to possess favorable hysteretic behavior. In order to prove the applicability of the SIVC concept, several prototype SIVC isolators, whose sliding surfaces are defined by a sixth‐order polynomial function, were fabricated and tested in this study. A cyclic element test on the prototype SIVC isolators and a shaking table test on an SIVC isolated steel frame were all conducted. The results of both tests have verified that the prototype SIVC isolators do indeed have the hysteretic property of variable stiffness as prescribed by the derived formulas in this study. Moreover, it is also demonstrated that the proposed SIVC is able to effectively reduce the isolator drift in a near‐fault earthquake with strong long‐period components, as compared with that of an FPS system with the same friction coefficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A new isolation interface is proposed in this study to retrofit existing buildings with inadequate soft stories as well as new structures to be constructed with soft first story intended for architectural or functional purposes. The seismic interface is an assembly of bearings set in parallel on the top of the first story columns: the multiple‐slider bearings and rubber bearings. The multiple‐slider bearing is a simple sliding device consisting of one horizontal and two inclined plane sliding surfaces based on polytetrafluoroethylene and highly polished stainless steel interface at both ends set in series. A numerical example of a five‐story reinforced concrete shear frame with soft first story is considered and analyzed to demonstrate the efficiency of the proposed isolation system in reducing the ductility demand and damage in the structure while maintaining the superstructure above the bearings to behave nearly in the elastic range with controlled bearing displacement. Comparative study with the conventional system as well as various isolation systems such as rubber bearing interface and resilient sliding isolation is carried out. Moreover, an optimum design procedure for the multiple‐slider bearing is proposed through the trade‐off between the maximum bearing displacement and the first story ductility demand ratio. The results of extensive numerical analysis verify the effectiveness of the multiple‐slider bearing in minimizing the damage from earthquake and protecting the soft first story from excessively large ductility demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
For the purpose of accurately predicting the seismic response of base-isolated structures, an analytical hysteresis model for elastomeric seismic isolation bearings is proposed. An extensive series of experimental tests of four types of seismic isolation bearings—two types of high-damping rubber bearings, one type of lead-rubber bearing and one type of silicon rubber bearing—was carried out with the objective of fully identifying their mechanical characteristics. The proposed model is capable of well-predicting the mechanical properties of each type of elastomeric bearing into the large strain range. Earthquake simulator tests were also conducted after the loading tests of the individual bearings. In order to show the validity of the proposed model, non-linear dynamic analyses were conducted to simulate the earthquake simulator test results. Good agreement between the experimental and analytical results shows that the model can be an effective numerical tool to predict not only the peak response value but also the force–displacement relationship of the isolators and floor response spectra for isolated structures. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
为完善大跨长联连续梁桥的减震和隔震技术,提出将负刚度装置引入某带有摩擦摆支座隔震的大跨长联连续梁桥中组成新型减震和隔震系统。基于CSIBridge软件建立全桥有限元模型,负刚度装置采用弹性多段线模拟,摩擦摆支座采用双线性恢复力模型,输入7条地震波进行了非线性时程分析,考查了新型减震和隔震系统下桥梁结构的地震反应,探究了负刚度系统对大跨长联隔震连续梁桥地震反应的影响。研究结果表明:在大跨长联隔震连续梁桥上布置负刚度装置后,梁体加速度及支座位移可被有效降低,近场地震动下的墩底内力也有明显减小。负刚度装置可有效提高大跨长联摩擦摆支座连续梁桥的抗震性能,负刚度装置也适用于大跨长联隔震连续梁桥。  相似文献   

20.
The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of beyond design basis loadings, including extreme earthquakes. The United States Nuclear Regulatory Commission is sponsoring a research project that will quantify the response of low damping rubber (LDR) and lead rubber (LR) bearings under loadings associated with extreme earthquakes. Under design basis loadings, the response of an elastomeric bearing is not expected to deviate from well‐established numerical models, and bearings are not expected to experience net tension. However, under extended or beyond design basis shaking, elastomer shear strains may exceed 300% in regions of high seismic hazard, bearings may experience net tension, the compression and tension stiffness will be affected by isolator lateral displacement, and the properties of the lead core in LR bearings will degrade in the short‐term because of substantial energy dissipation. New mathematical models of LDR and LR bearings are presented for the analysis of base isolated structures under design and beyond design basis shaking, explicitly considering both the effects of lateral displacement and cyclic vertical and horizontal loading. These mathematical models extend the available formulations in shear and compression. Phenomenological models are presented to describe the behavior of elastomeric isolation bearings in tension, including the cavitation and post‐cavitation behavior. The elastic mechanical properties make use of the two‐spring model. Strength degradation of LR bearing under cyclic shear loading due to heating of lead core is incorporated. The bilinear area reduction method is used to include variation of critical buckling load capacity with lateral displacement. The numerical models are coded in OpenSees, and the results of numerical analysis are compared with test data. The effect of different parameters on the response is investigated through a series of analyses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号