首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, untreated and treated wood fly ash (WA) was used as a low‐cost sorbent in batch sorption tests to investigate the removal of organic pollutants from a real wastewater generated by cleaning/washing of machinery in a wood‐laminate floor industry in Sweden. The experiments focused on the effect of the WA dosage and particle size on the removal efficiency for organic compounds. With a WA dosage of 160 g L?1 and a particle size less than 1 mm, the reductions of chemical oxygen demand (COD), biologic oxygen demand, and total organic carbon were 37 ± 0.4, 24 ± 0.4, and 30 ± 0.3%, respectively. Pre‐treatment of WA with hot water improved the COD removal efficiency by absorption from 37 ± 0.4 to 42 ± 1.6% when the same dosage (160 g L?1) was applied. Sorption isotherm and sorption kinetics for COD using untreated WA can be explained by Freundlich isotherm and pseudo‐second‐order kinetic models. Intra‐particle diffusion model indicates that pore diffusion is not the rate‐limiting step for COD removal. Based on the experimental data, WA could be used as an alternative low‐cost sorption media/filter for removal of organic compounds from real industrial wastewater.  相似文献   

2.
The integrated steel industry is considered as one of the important industrial sectors, and its outputs are inputs for other sectors including construction, engineering, medical and scientific equipment, and defence. Massive production, consumption, and export of steel signify a country's economic index. This review outlines the World's steel production quantities, the processes involved, and wastewater generation from the industry and its treatment. Wastewater generated from steel plants is highly complex and requires intensive treatment before discharge into natural water bodies. Technologies adopted for treating wastewater generated from steel industries are deliberated, focusing on coking wastewater treatment. Microbial mediated processes provide an effective means of degrading the contaminants, but the toxicity of certain compounds during higher pollutant load inhibits its further treatment. However, these processes can be integrated with either electrochemical technologies or advanced oxidation processes (AOPs), which can reduce the toxicity level. Hence, when a highly concentrated and complex mixture of contaminants is considered, an integrated approach is a resourceful option in terms of cost-effectiveness and treatment efficiency.  相似文献   

3.
A field study was conducted to examine the fate and potential effects of olestra, a non-caloric fat replacer, in septic tanks. The study compared the performance of parallel septic tanks, which were led domestic waste water with liquid and solid forms of olestra, against a control tank receiving waste water without olestra. Results showed that 36 g/d of olestra dosed to the tanks (a three-fold exaggeration of expected loadings) had no adverse effect on system operation (based on visual observations and sludge accumulation) or performance (based on removal of organic content and solids) over a six-month period. Removal efficiencies for total suspended solids (TSS), carbonaceous biochemical oxygen demand (CBOD), and chemical oxygen demand (COD) were not significantly different (p<0.05) in the olestra tanks when compared to the control tank. In addition, a relatively small amount of the total olestra added (3 to 6%) was recovered in the septic tank effluents over the course of the study. Accumulation of tank solids was not affected as measured sludge levels in the tank at the middle and end of the study showed no difference between the olestra dosed tanks and the control tank.  相似文献   

4.
In arid and semi-arid regions, many rivers experience extremely low flow conditions during seasonal dry periods. During these times, effluent from wastewater treatment plants can make up the majority of flow in the river. However, water quality in urban systems can also be strongly influenced by the natural or human-influenced flow regime and discharge from other anthropogenic sources such as industrial operations and runoff from impervious surfaces. In this study, we aimed to determine whether water quality was controlled primarily by wastewater discharge in an effluent-dominated river. Between May 2016–May 2019, we systematically measured water temperature, pH, dissolved oxygen, biochemical oxygen demand, and the concentrations of nitrate-N, ammonia-N, and orthophosphate in the South Platte River in the Denver metropolitan area, Colorado, USA. We found that, despite being an effluent-dominated river, wastewater treatment plant discharge was not the principal factor controlling water quality in many of the sampled areas. Non-point source pollution from impervious surfaces, delivered to the river through storm drains and minor tributary streams, also contributed to the high nutrient conditions in several locations. We also noted a strong seasonality in water quality, with higher concentrations of nutrients and higher biochemical oxygen demand in the winter months when wastewater effluent can make up more than 90% of the flow in the river. Thus, the interaction of discharge location and reduced seasonal flow produced spatio-temporal hot spots of diminished water quality. More stringent enforcement of water quality regulations may improve water quality in this system. However, a large portion of the pollution seems to be from non-point sources, which are very difficult to control.  相似文献   

5.
胡鹏  袁希平 《地震工程学报》2018,40(5):1098-1104
传统水资源信息管理模型采用GIS网络技术,对水资源信息进行优化配置,未对地震多发区域水资源管网进行综合规划,存在地震破坏后受污染水资源信息管理性能差的问题。设计考虑区域水资源地震破坏后污染的信息管理模型,模型包括受污染水资源信息规划设计模块、信息监测和采集模块、信息管理模块。3个模块分别实现对地震破坏后污染的水资源管网的合理规划、监测和采集以及污染信息的综合管理。实验结果表明,所设计模型对区域水资源地震破坏后污染的信息管理的平均时间达到1.38 s,且在管理过程中各项功能的评分都高于93.5分,具有较高的管理性能。  相似文献   

6.
The oxidation of organic matter from wastewater using ozone, ultraviolet radiation and ozone/UV oxidation was evaluated in a pilot plant, applying a continuous effluent arising from the Autonomous Metropolitan University wastewater treatment plant. The oxidation was measured as the efficiency to remove organic load, measured as chemical oxygen demand. The use of ozone and UV was evaluated separately and in combination through a continuous process. Three different ozone doses (0.6–1.2 mg O3/L) and three different UV radiation fluencies (6.7–20.12 mJ/cm2) were assessed. A synergistic effect of the combined process ozone/UV was demonstrated, and a maximal chemical oxygen demand reduction was achieved both processes. Due to residence times used (less than 1 min), 36% of chemical oxygen demand reduction was obtained when ozone treatment was evaluate separately and only 9% using ultraviolet radiation.  相似文献   

7.
Slaughterhouse wastewater is one of the main sources of environmental pollutants, containing a high amount of organic matter (chemical oxygen demand (COD), biochemical oxygen demand (BOD)), total nitrogen (TN), total suspended solids (TSS), total phosphorus (TP), grease, and oil. The main aim of the present research is optimizing the coagulation–flocculation process and examining the effects of experimental factors with each other, for example, pH, the concentration of two different coagulants (FeCl3 and alum), rapid mixing rate, and settling time. Therefore, it is aimed to treat slaughterhouse wastewater using the coagulation–flocculation process with the optimization of the response surface methodology (RSM). COD, turbidity, and suspended solids (SS) of the treated wastewater are chosen as the response variables. Furthermore, the optimal conditions for three responses are acquired by employing the desirability function approach. When the experimental results of two coagulants are compared, it is observed that the alum coagulant gave better results for the three responses. The alum coagulant utilized in the present research is able to increase COD, SS, and turbidity removal efficiency by 75.25%, 90.16%, and 91.18%, respectively. It is possible to optimize coagulation–flocculation by utilizing the RSM analysis, which proves that coagulation can pre‐treat slaughterhouse wastewater.  相似文献   

8.
耿玉琴  朱威  王同生 《湖泊科学》2003,15(Z1):255-260
太湖流域水资源供需矛盾主要体现为"水质型缺水"问题,如何对"水质型缺水"进行定量描述,在太湖流域是一个难题.本文提出了"分质水资源量"的概念,以流域水资源四级分区为单元,以分区水质监测资料结合水资源量进行分析,分别统计分区分质水资源量.分析表明:太湖流域142×108 m3的地表水资源量中,Ⅲ类以上的适合于饮用水源和一般工业用水的优质水为35.8×108 m3,占25.2%;适合于电力冷却用水、农业灌溉的Ⅳ-Ⅴ类水为46.4×108 m3,占32.6%;不可利用的劣Ⅴ类水有59.9×108 m3,占42.2%.流域内优于Ⅴ类(含Ⅴ类)的地表水资源量为82.2×108 m3,占地表水总资源量的57.8%.而浅层地下水己基本被污染.需要指出,Ⅰ-Ⅲ类优质水虽仍有35.8×108 m3,但目前流域内对Ⅰ-Ⅲ类水的需求量己达60.6×108 m3,如将此两数对比,则优质水缺额为24.8×108 m3,但实际上,优质水的需求主要集中在流域中下游,而可供优质水水源则主要集中在流域上游地区山区水库和中游太湖湖心区、东部湖区和太浦河,供需两者的空间分布有较大出入,因此优质水资源缺额将更大,由此可见太湖流域水质型缺水形势十分严峻.  相似文献   

9.
Major challenges attributed to dysfunctional wastewater treatment facilities in developing countries include lack of commitment and poor informed decision making by the higher municipal administration. This paper presents how process monitoring and control during full scale operation ensures sustainability of civic infrastructures like Al‐Bireh wastewater treatment plant (AWWTP). It is written from the perspective of practical process selection to evaluate the performance of AWWTP, a single‐sludge nitrification–denitrification process with aerobic sludge stabilization. Process monitoring data (July 2000–April 2007) from available monthly operating reports were analyzed and evaluated. Additional data on microbiological analysis and information about facility unit operations were gathered through review of published local literature and interviews with AWWTP personnel. Influent and effluent data evaluated were the chemical oxygen demand (COD), biological oxygen demand (BOD), total nitrogen (TN), and total phosphorus (TP). Despite annual and seasonal variations in AWWTP influent for COD, BOD, TN, and TP, the Palestinian wastewater reuse requirements for restricted irrigation were met. Process design and proper facility operation have direct impacts on effluent quality. The study concludes that regardless of the design capacity and process type, adequate administrative and operational management dictate the sustainability of AWWTP and reuse schemes.  相似文献   

10.
The stable isotopes of hydrogen and oxygen (δ2H and δ18O, respectively) have been widely used to investigate tree water source partitioning. These tracers have shed new light on patterns of tree water use in time and space. However, there are several limiting factors to this methodology (e.g., the difficult assessment of isotope fractionation in trees, and the labor-intensity associated with the collection of significant sample sizes) and the use of isotopes alone has not been enough to provide a mechanistic understanding of source water partitioning. Here, we combine isotope data in xylem and soil water with measurements of tree's physiological information including tree water deficit (TWD), fine root distribution, and soil matric potential, to investigate the mechanism driving tree water source partitioning. We used a 2 m3 lysimeter with willow trees (Salix viminalis) planted within, to conduct a high spatial–temporal resolution experiment. TWD provided an integrated response of plant water status to water supply and demand. The combined isotopic and TWD measurement showed that short-term variation (within days) in source water partitioning is determined mainly by plant hydraulic response to changes in soil matric potential. We observed changes in the relationship between soil matric potential and TWD that are matched by shifts in source water partitioning. Our results show that tree water use is a dynamic process on the time scale of days. These findings demonstrate tree's plasticity to water supply over days can be identified with high-resolution measurements of plant water status. Our results further support that root distribution alone is not an indicator of water uptake dynamics. Overall, we show that combining physiological measurements with traditional isotope tracing can reveal mechanistic insights into plant responses to changing environmental conditions.  相似文献   

11.
One way to reduce water consumption in urban areas is by using alternative sources of supply that can be provided by collecting rainwater and reusing wastewater for less restricted purposes. Thus, this study evaluated the characteristics of effluents produced by the wastewater treatment plant (WWTP) of São Paulo International Airport (SPIA), Brazil, in order to reuse it in non‐potable situations. The results achieved, indicated high efficiency in the biological system utilized by SPIA. The removal rates is equal to or >90% for most of the parameters analyzed, among them, fluoride, salinity, nitrite, nitrate, ammonium nitrogen, total nitrogen, phosphorus, sedimentable solids, turbidity, conductivity, apparent color, chemical oxygen demand, biochemical oxygen demand, total organic carbon, fecal coliforms, and oils and greases. Despite the final effluents were good enough to be launched in the local streams, they shall be submitted to a complementary treatment in order to fit some quality parameters to be reused for specific demands (landscape irrigation, toilet flushing, vehicle washing, fire fighting, and dust control).  相似文献   

12.
Testing Effluents of the Textile Refining Industry with Biological Methods The environmental problems caused by the manufacture of finished textiles involve a long chain of individual processes. This “textile chain” includes very diverse enterprises of varied size and structure. The textile refiners occupy a key position in the “textile chain”. On the one hand, this is due to their use of an obscurely large number of chemicals which can end up in the wastewater as well as in the textile products. On the other hand, this key role of the textile refining industry is based on their central position between the preproduction stage and the consumers. This study dealt with the textile refining industry's wastewater. As measured by volume and contents of its wastewater, this industry can be counted among the major industrial plants which discharge into municipal wastewater treatment plants. German wastewater legislation includes the provision that substances which are toxic, persistent, capable of accumulating, carcinogenic, fetotoxic or mutagenic be kept out of natural waters as well as technically possible (Wasserhaushaltsgesetz WHG). Several biotest methods for examining the effect of the substances contained in the wastewater were incorporated into the appendix of the German wastewater regulation (Rahmenabwasser-Verwaltungsvorschrift based on § 7a WHG). The aim of this study was to show, with the aid of biotest methods, how strongly the wastewater of textile refining companies is polluted as compared to other known industrial branches and to what degree the pollution of these wastewaters is eliminated by the treatment in wastewater treatment plants. Finally, we experimented to find out which biotest methods were suited for the examination of these wastewaters. The study's results show that the ecotoxicity of the textile refining industry's wastewater was only extraordinary high in isolated cases as compared to other examined branches of industry. The textile wastewaters exhibit values of GL = 3 to GL = 96 in the luminescent bacteria test, GD = 1 to GD = 192 (with one exception of GD > 30000) in the daphnia test and GF < = 2 to GF = 32 in the fish test. It turned out though, that a large number of the samples from the textile refining companies (27%) reacted mutagenically in the Ames test in their native state. Consecutive tests for chromosomal aberrations (V79 hamster cell test) also showed mutagenic potential in five out of nine native samples. The employed testing methods with fish, daphnia and luminescent bacteria demonstrate a higher sensitivity of the luminescent bacteria and/or the daphnia as opposed to the fish in most cases. As the fish test is controversial anyway on the grounds of animal protection, a replacement of the fish test by these other tests should be aimed at: on account of the different end points of the luminescent bacteria and the daphnia test, a combination of these tests appears most sensible.  相似文献   

13.
In the present study assessment of physicochemical and bacteriological parameters of Lake Fateh Sagar of Udaipur (Rajasthan), India was done. Water samples were collected during different seasons for analysis of physicochemical parameters such as pH, temperature, total alkalinity, total hardness, dissolved oxygen, biological oxygen demand and chemical oxygen demand. In addition, the bacteriological analysis like total bacterial and coliform count was detected. Incidences of Escherichia coli and their antibiotic resistance pattern were analyzed, which is the major microbiological indicator of faecal contamination. The values of some physicochemical and many of the bacteriological parameters were found above the permissible limits for drinking water recommended by World Health Organization. E. coli isolates were identified by morphological, biochemical and molecular characteristics using E. coli specific 16S rRNA gene based primers namely 16E1, 16E2 and 16E3 and universal primers namely 27F and 1492R by PCR. It was found that most of E. coli strains were strongly resistant to kanamycin, ampicillin, cefixime, polymyxin B, penicillin, vancomycin, rifampicin and streptomycin. The study of water quality is of significant value because the drinking water supply of the city is dependent on this lake and present study indicated that the lake water is polluted with reference to these analyzed parameters.  相似文献   

14.
15.
水产养殖清塘过程中的排水是造成周边水环境污染的重要环节,但对此环节中污染物排放特征和影响程度的研究仍相对不足。为有效减少清塘过程的排水对环境的污染,推进水产养殖业绿色发展,本研究选取典型鱼类集约化养殖区,通过高频采样和监测,分析了阶段式排水时混养鱼塘尾水中的悬浮物、有机物和营养盐等指标的浓度变化,明确污染物的排放特征,同时分析受纳水体不同断面的水质变化情况。研究结果表明:总悬浮物浓度(TSS)、高锰酸盐指数(CODMn)、总磷(TP)、总氮(TN)和氨氮(NH3-N)浓度随着持续排水呈上升趋势,在排水末期污染物浓度均快速上升,磷酸盐磷(PO43--P)浓度仅在排水末期骤升,硝态氮(NO3--N)浓度随排水持续下降,亚硝态氮(NO2--N)浓度随排水先上升后下降;根据《淡水池塘养殖水排放要求》二级标准,排水末期TN、TP、TSS浓度超标倍数分别达4.70、6.66、206.90;尾水流量与河流量约以1/200的比例...  相似文献   

16.
Synoptic water sampling at a fixed site monitoring station provides only limited ‘snap‐shots’ of the complex water quality dynamics within a surface water system. However, water quality often changes rapidly in both spatial and temporal dimensions, especially in highly polluted urban rivers. In this study, we designed and applied a continuous longitudinal sampling technique to monitor the fine‐scale spatial changes of water quality conditions, assess water pollutant sources, and determine the assimilative capacity for biochemical oxygen demand (BOD) in an urban segment of the hypoxic Wen‐Rui Tang River in eastern China. The continuous longitudinal sampling was capable of collecting dissolved oxygen (DO) data every 5 s yielding a ~11 m sampling interval with a precision of ±0.1 mg L?1. The Streeter and Phelps BOD‐DO model was used to calculate: (1) the oxygen consumption coefficient (K1) required for calibration of water quality models, (2) BOD assimilative capacity, and (3) BOD source and load identification. In the 2014 m river segment sampled, the oxygen consumption coefficient (K1) was 0.428 d?1 (20°C), the total BOD discharge was 916 kg d?1, and the BOD assimilative capacity was 382 kg d?1 when the minimum DO level was set to 2 mg L?1. In addition, the longitudinal analysis identified eight major drainage outlets (BOD point sources), which were verified by field observations. This new approach provides a simple, cost‐effective method of evaluating BOD‐DO dynamics over large spatial areas with rapidly changing water quality conditions, such as urban environments. It represents a major breakthrough in the development and application of water quality sampling techniques to obtain spatially distributed DO and BOD in real time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
太浦河是太湖流域重要跨省界河流,沿岸区域污染源众多,下游分布重要水源地,存在突发水污染潜在风险,迫切需要开展区域污染源潜在风险评估,为突发水污染事件的风险防控提供科学依据.本研究通过太浦河周边区域的污染源调研,明确污染源的空间分布与污染源强,确定评估区域的主要污染物(化学需氧量、氨氮、锑、重金属铬、油品、危险化学品),综合考虑污染源、河流水文、沿岸社会经济等因素,筛选突发水污染潜在风险评估指标,构建评估指标体系,评估突发水污染事件的综合风险,识别太浦河周边区域的主要突发水污染潜在风险源.研究结果表明:太浦河周边区域的高突发水污染风险区呈现片状或斑块状分布,主要包括大型污水处理厂区域、大型工业企业区域、加油站和危险化学品仓库集中分布区、太浦河沿岸工业企业区域、水源地周边工业企业区域,总面积为22 km2,占太浦河污染源风险评估范围总面积的1.4%,是突发水污染事件防控的重点区域.  相似文献   

18.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   

19.
Wastewater with high ammonia concentrations is produced by many industries, e.g. in the production of fertilizer and explosives and in the agricultural and food industry. A direct discharge into rivers and lakes has to be avoided: Oxidation of ammonia requires 4.56 g DO/g NH+4-N and results in a decrease of dissolved oxygen concentration. Moreover, nitrate stimulates the proliferation of algae, with regard to the eutrophication of natural waters. For municipal wastewater with an ammonia concentration less than 50 mg/L NH+4-N nitrification is a standard process. However, the removal of higher loaded industrial effluents still poses many questions. Recently, lab-scale and pilot-scale investigations show remarkable advances in the increase in nitrification efficiency and in the stabilization of the process. But because of changing flowrates and concentrations, the aid of advanced control algorithms is necessary. Some of the most important variables of biochemical reactors can be determined only with difficulty, at times only with off-line measurements. Model-aided measurement approaches try to determine these variables indirectly from easily measured variables. An experimentally-proved reactor model is required. Therefore, a dynamic model of nitrification in ideally mixed reactors is proposed based on mass balances for the components ammonia. nitrite, nitrate. dissolved oxygen DO, carbon dioxide, pH. nitrosomonas and nitrobacter. The biological reaction rates consider oxygen limitation and substrate inhibition. The process model presented is tested by lab scale experiments using an aerated stirred tank reactor and a fluidized bed reactor. Conformity between the predictions of the model and the observed data was positive. It has been shown that the nitrite oxidation by nitrobacter is the most sensible step in nitrification.  相似文献   

20.
The Salt-water River watershed is one of the major river watersheds in the Kaohsiung City, Taiwan. Water quality and sediment investigation results show that the river water contained high concentrations of organics and ammonia-nitrogen, and sediments contained high concentrations of heavy metals and organic contaminants. The main pollution sources were municipal and industrial wastewaters. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments can be characterized as heavily polluted in regard to Cd, Cr, Pb, Zn, and Cu. The water quality analysis simulation program (WASP) model was applied for water quality evaluation and carrying capacity calculation. Modeling results show that the daily pollutant inputs were much higher than the calculated carrying capacity (1050 kg day(-1) for biochemical oxygen demand and 420 kg day(-1) for ammonia-nitrogen). The proposed watershed management strategies included river water dilution, intercepting sewer system construction and sediment dredging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号