首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Textile wastewater contains huge quantities of nitrogen (N)‐containing azo‐dyes. Irrigation of crops with such wastewater adds toxic dyes into our healthy soils. One of the ways to prevent their entry to soils could be these waters after the dyes' biodegradation. Therefore, the present study was conducted to evaluate the impact of textile dyes on wheat growth, dye degradation efficiency of bacteria‐fungi consortium, and alleviation of dye toxicity in wheat by treatment with microbial consortium. Among dyes, Red‐S3B (3.19% N) was found to be the most toxic to germination and growth of seven‐day‐old wheat seedlings. Shewanella sp. NIAB‐BM15 and Aspergillus terreus NIAB‐FM10 were found to be efficient degraders of Red‐S3B. Their consortium completely decolorized 500 mg L?1 Red‐S3B within 4 h. Irrigation with Red‐S3B‐contaminated water after treatment with developed consortium increased root length, shoot length, root biomass, and shoot biomass of 30‐day‐old wheat seedlings by 47, 18, 6, and 25%, respectively, than untreated water. Moreover, irrigation after microbial treatment of dye‐contaminated water resulted in 20 and 51% increase in shoot N content and N uptake, respectively, than untreated water. Thus, co‐inoculation of bacteria and fungi could be a useful bioremediation strategy for the treatment of azo‐dye‐polluted water.  相似文献   

2.
Acid violet 19 (AV) belongs to the triphenylmethane (TPM) class of dyes which are potentially mutagenic or carcinogenic. However, very little studies on biodegradation of AV were reported as compared to other TPM dyes such as malachite green and crystal violet. In this study, AV was decolorized up to 98% within 30 min by Pseudomonas aeruginosa BCH. The decolorization depends on the initial dye concentration, pH, and temperature. However, the dye was decolorized under wide pH and temperature ranges with an optimum of pH 7 and 30°C. Up to 250 mg L?1 of dye was found to be tolerated and decolorized by this strain. It showed decolorization ability for seven repeated dye addition cycles. The effect of additional carbon sources on dye decolorization was studied in which mannitol containing medium showed decolorization in 15 min. Induction in the enzyme activities of laccase, NADH‐DCIP reductase, and veratryl alcohol oxidase (VAO) indicates their involvement in AV degradation. Various analytical studies viz. UV–VIS, HPTLC, HPLC, and FTIR confirmed the biodegradation of AV by the bacterium. Based on GC‐MS analysis, a possible degradation pathway for AV was proposed. The phytotoxicity studies using Phaseolus mungo and Sorghum vulgare revealed the less toxic nature of metabolites formed after AV degradation.  相似文献   

3.
Purification of Wastewaters Containing Azo Dyes This study describes the degradability of the azo dye C.I. Reactive Violet 5 by a continuous flow biological treatment system consisting of three rotating disc reactors. The azo dye was first decolorized in an anaerobic reactor. Decolorization was improved by adding an auxiliary substrate (yeast extract and acetic acid). Although severe operating conditions were experienced due to failures in the temperature and pH-controllers, the reactor recovered quickly and continued to decolorize reliably. The removal of the auxiliary substrate in the anaerobic reactor was not satisfactory, probably due to the copper in the azo dye. Batch experiments showed that copper was removed from the dye molecule and precipitated during the decolorization. In the continuous flow reactor, the copper precipitate on the disc can redissolve due to a pH-gradient in the fixed biomass becoming toxic again for the bacteria. In the following two aerobic reactors, the auxiliary substrate was degraded, but mineralization of the dye metabolites was insufficient. The aromatic amines produced by the anaerobic decolorization are more toxic in the bacterial luminescence test than the azo dye. Therefore, decolorization alone cannot be used to treat colored wastewater. Since the amines can also be produced in anaerobic parts of rivers, the dyes have to be removed in a more efficient way. That is the reason why in further experiments ozonation is being tested to increase the biological degradability of the azo dye for a following aerobic stage. Either ozonation can be used after the two stage treatment of the dye in anaerobic/aerobic reactors or the dye can be oxidized directly, making the addition of auxiliary substrate unnecessary. These configurations are being tested with the goal to degrade the dye with the least ozone consumption.  相似文献   

4.
Laccase from the white‐rot fungus Pleurotus florida, produced under solid‐state fermentation conditions, was used for the decolorization of reactive dye Remazol Brilliant Blue R (RBBR). RBBR was decolorized up to 46% by P. florida laccase alone in 10 min. In the presence of N‐hydroxybenzotriazole (HBT), the rate of decolorization was enhanced 1.56‐fold. Central composite design of response surface methodology with four variables namely, dye, enzyme, redox mediator concentrations, and time at five levels was applied to optimize the RBBR decolorization. The predicted optimum level of variables for maximum RBBR decolorization (87%) was found to be 52.90 mg L?1 (RBBR), 1.87 U mL?1 (laccase), 0.85 mM (HBT), and 7.17 min (time), respectively. The validation results showed that the experimental value of RBBR decolorization (82%) was close to the predicted one. The disappearance of C–N and C–X groups, and a small shift in N–H groups in Fourier‐transform infra red (FTIR) spectroscopy confirms the degradation of RBBR chromophore by laccase enzyme. The phytotoxicity of RBBR was considerably reduced after the treatment with laccase. RBBR decolorization kinetics; Km and Vmax were calculated to be 145.82 mg L?1 and 24.86 mg L?1 min, respectively.  相似文献   

5.
Solar photocatalytic decolorization and detoxification of batik dye wastewater using titanium dioxide (TiO2) immobilized on poly‐3‐hydroxybutyrate (P(3HB)) film was studied. The effects of initial dye concentration, catalyst concentration, P(3HB) film thickness, and fabrication methods of the nanocomposite films were evaluated against methylene blue, a standard organic dye. It was observed that 0.4 g of P(3HB)‐40 wt% TiO2 removed 96% of the color under solar irradiation. P(3HB) and TiO2, mixed concurrently in chloroform followed by stirring for 24 h showed a more even distribution of the photocatalyst on the polymer surface and yielded almost 100% color removal. The photocatalytic films were able to completely decolorize real industrial batik dye wastewater in 3 h and induced a chemical oxygen demand (COD) reduction of 80%. Reusability of the 0.4 g P(3HB)‐40 wt% TiO2 film in decolorizing the batik dye wastewater was also possible as it gave a high consistent value of decolorization percentage (>80%) even after the sixth repeated usage. Recovery step of the photocatalysts was also not required in this simple treatment system. The decolorized batik dye wastewater had less/no toxic effects on mosquito larvae, Aedes aegypti, and microalgae, Scenedesmus quadricauda indicating simultaneous detoxification process along with the decolorization process.  相似文献   

6.
This paper deals with the removal of textile dyes from aqueous solutions by poly(propylene imine) dendrimer (PPI). Direct red 80 (DR80), Acid Green 25 (AG25), Acid Blue 7 (AB7), and Direct Red 23 (DR23) were used as model dyes. The effects of operational parameters on dye removal such as dendrimer concentration, dye concentration, salt (inorganic anions), and pH have been studied at 25°C. The Langmuir and Freundlich isotherm models were investigated. In addition, dye desorption of dendrimer was studied. The results indicated that acidic pH supported the adsorption of dyes by dendrimer. Furthermore studies of dye concentration and salt effects exhibited that dye removal percentage by dendrimer was decreased. It was found that the isotherm data of DR80, AG25, and DR23 followed Langmuir isotherm and isotherm data of AB7 followed Freundlich isotherm models. Desorption tests showed that maximum dye releasing of 76.5% for DR80, 84.5% for AG25, 87% for AB7, and 93% for DR23 were achieved in aqueous solution at pH 12. Based on the data of present study, one could conclude that the dendrimer being an environmentally friendly adsorbent with relatively large adsorption capacity might be a suitable alternative for elimination of dyes from colored textile wastewater.  相似文献   

7.
Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM‐2 biosorbed maximum amount of Cr6+ (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr3+ was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr6+ and Cr3+ from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates.  相似文献   

8.
The photocatalytic decolorization and mineralization of Reactive Black 5 (RB5) dye in presence of TiO2 Degussa P25 has been studied using artificial light radiation in a shallow pond slurry reactor. The equilibrium adsorption of dye, influence of pH (3–11), catalyst load (0.5–3.0 g/L), and dye concentration (20–100 mg/L) on decolorization kinetics were studied. The effect of area to volume ratio of photoreactor on decolorization kinetics has been also studied. Mineralization studies were performed at optimized conditions of pH (3) and catalyst load (1.5 g/L). The maximum adsorption (26.5 mg/g) of dye was found to occur at pH 3. The apparent pseudo first order decolorization rate constant (kapp) value followed the order pH 3 > pH 11 > pH 9 > pH 7. As compared to available literature reduction in total organic carbon (TOC) was minimal by the time there was complete decolorization. Initial reduction in TOC was followed by subsequent increasing trend till complete decolorization. Final decreasing trend in TOC was observed only after complete decolorization. Twelve hours of treatment under experimental conditions reduced TOC content by 70% only. Discussion of results suggest that photocatalytic treatment of colored effluent under low UV intensity, and low A/V ratio may result in completely decolorized effluent but still having high COD.  相似文献   

9.
By‐products of various industrial fermentations can be good adsorbents for removing hazardous dyes from wastewater. However, after biosorption, regeneration of biomass is essential to minimize the solid waste generation or else the dye laden biomass should be suitably disposed off. In the present work, experiments were conducted on the Acid Navy Blue and Methylene Blue dyes which were biosorbed to the fungal biomass (strain closely related to Aspergillus lentulus) produced on corncob as the substrate through solid state fermentation. In order to dispose the dye laden biomass, it was vermicomposted along with cow dung (CD) employing Eisenia fetida. Results indicated that the dye laden biomass was not lethal toward the earthworms as no mortality was observed. However, as compared with control experiments (where dye laden biomass was absent), the reproductive potential of the earthworms was affected. Nevertheless, further investigations on optimization of biomass and CD ratios can facilitate vermicomposting as a potential route for disposing dye laden biomass.  相似文献   

10.
Response surface methodology (RSM) was employed to investigate the effects of different operational parameters on the biological decolorization of a dye solution containing malachite green (MG) in the presence of macroalgae Chara sp. The investigated variables were the initial pH, initial dye concentration, algae amount, and reaction time. Central composite design (CCD) was used for the optimization of biological decolorization process. Predicted values were found to be in good agreement with experimental values (R2 = 0.982 and Adj‐R2 = 0.966), which indicated suitability of the employed model and the success of RSM. The results of optimization predicted by the model showed that maximum decolorization efficiency was achieved at the optimum condition of the initial pH 6.8, initial dye concentration 9.7 mg/L, algae amount 3.9 g, and reaction time 75 min. UV–VIS spectra and FT‐IR analysis showed degradation of MG.  相似文献   

11.
A magnetic‐sulfonic graphene nanocomposite (G‐SO3H/Fe3O4) was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. It was used for removal of three cationic dyes: safranine T (ST), neutral red (NR), victoria blue (VB), and three anionic dyes: methyl orange, brilliant yellow, and alizarin red, from environmental water. The experimental conditions were optimized, including pH, amount of adsorbent, adsorption kinetics, adsorption isotherms, ionic strength, etc. The results show that G‐SO3H/Fe3O4 can adsorb cationic dyes more efficiently and selectively than anionic dyes at pH 6.0. In the first 10 min of adsorption time, more than 93% of the cationic dyes were removed by the sorbent. Adsorption kinetics follow the pseudo‐second‐order kinetic model well. The adsorption isotherm coincided with Langmuir and Freundlich adsorption models. The maximum adsorption capacities of G‐SO3H/Fe3O4 for ST, NR, and VB dyes were 199.3, 216.8, and 200.6 mg g?1. The adsorbed cationic dyes were eluted by using different pH values of ethanol as the solvent. The established method was simple, sensitive, and rapid, and was suitable for the adsorption of cationic dyes in environmental water.  相似文献   

12.
In this study, various amounts of oxygen were added to the anaerobic phase of an anaerobic‐aerobic sequencing batch reactor (SBR) receiving azo dye remazol brilliant violet 5R to mimic the input of oxygen into the anaerobic zones of biological textile wastewater treatment plants. The effect of oxygen on the anaerobic biodegradative capability of the mixed microbial culture for remazol brilliant violet 5R was investigated. To investigate the effect of oxygen on anaerobic azo dye biodegradation, the anaerobic phase of the SBR cultures were exposed to a very low limited amount of oxygen for various air flow rates. Initially, an air flow rate of 20 mL/min was applied, further on the air flow rate in the anaerobic phase was increased up to 40 mL/min. System performance was determined by monitoring chemical oxygen demand, color removal rate, activities of anaerobic (azo reductase) and aerobic enzymes (catechol 2,3‐dioxygenase, catechol 1,2‐dioxygenase). The results of percentage COD reduction at each stage were similar for all runs, giving an overall reduction of 96%. Anaerobic color removal efficiency and azo reductase activity of anaerobic microorganisms were adversely affected by the addition of oxygen. Color removal efficiencies of the anaerobic phases decreased from 80% down to 42 and 38% for the limited oxygen conditions of 20 mL/min and 40 mL/min, respectively. It was observed that the activity of catechol 2,3‐dioxygenase and catechol 1,2‐dioxygenase, involved in breakage of aromatic rings, increased after they are exposed to oxygen limited conditions compared to fully anaerobic conditions. It was also observed that catechol 1,2‐dioxygenase enzyme activity increased by increasing the oxygen level on oxygen limited conditions in the anaerobic zone.  相似文献   

13.
Sorption behavior of Lanaset Red (LR) G on lentil straw (LS) was studied as a function of particle size, adsorbent dose, initial pH value, initial dye concentration, and contact time. Sorption kinetics data was well described by logistic model. Modified logistic equation can be used to explain effects of initial dye concentrations and contact time on the sorption of LR G with high R2 value. Freundlich model was found to be excellent in representing the equilibrium data. Thermodynamic parameters like free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were calculated by the use of Langmuir constant. Thermodynamic data showed that the sorption processes were spontaneous and endothermic in nature. Desorption process suggested that strong binding and weak interactions could be formed between adsorbent surface and dye molecules. Results revealed that LS has a remarkable potential for the sorption of LR G.  相似文献   

14.
In this study, the oxidative decolorization of C.I. reactive yellow 145 (RY 145) from synthetic textile wastewater including RY 145 and polyvinyl alcohol by Fenton and sono‐Fenton processes which are the combination of Fenton process with ultrasound has been carried out. The effects of some operating parameters which are the initial pH of the solution, the initial concentration of Fe2+, H2O2, and the dye, temperature, and agitation speed on the color and chemical oxygen demand (COD) removals have been investigated. The optimum conditions have been found as [Fe2+] = 20 mg/L, [H2O2] = 20 mg/L, pH 3 for Fenton process and [Fe2+] = 20 mg/L, [H2O2] = 15 mg/L, pH 3 for sono‐Fenton process by indirectly sonication at 35 kHz ultrasonic frequency and 80 W ultrasonic power. The color and COD removal efficiencies have been obtained as 91 and 47% by Fenton process, and 95 and 51% by sono‐Fenton processes, respectively. Kinetic studies have been performed for the decolorization of RY 145 under optimum conditions at room temperature. It has been determined that the decolorization has occurred rapidly by sono‐Fenton process, compared to Fenton process.  相似文献   

15.
The potential to remove Ni(II) ions from aqueous solutions using sea beach sand, a carbonate‐quartz mineral, was thoroughly investigated. The effects of relevant parameters such as solution pH, adsorbent dose, metal ions concentration, and temperature on Ni(II) sorption onto beach sand were examined. The sorption data followed the Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The adsorption was endothermic in nature at ambient temperature and the computation of the parameters, ΔH, ΔS and ΔG indicated the interactions between sorbate and sorbent to be thermodynamically favorable. Equilibrium was achieved very quickly within 30 min of shaking. A pseudo‐first order Lagergren equation was used to test the adsorption kinetics. Other kinetic models, e. g., the Morris‐Weber and Reichenberg equations, were used to calculate the rate constant of intraparticle diffusion and the fate of the diffusion process, respectively. The influence of some of the common cations and anions were also a subject of this study.  相似文献   

16.
The removal of three basic dyes by adsorption onto bentonite was investigated for single, binary, and ternary solutions in a batch system. Before and after dye adsorption, bentonite samples were analyzed by using X‐ray fluorescence spectrometer, SEM, and Fourier transform IR spectrometry. The D‐optimal design and response surface methodology were applied in designing the experiments for evaluating the interactive effects of each initial concentrations variable of the dyes in binary systems. Predicted values were found to be in good agreement with experimental values, which defined propriety of the model and the achievement of D‐optimal in optimization of adsorption of binary dye systems. The competitive adsorption results showed that the adsorption amount of a dye was suppressed in the presence and increasing concentrations of second or third dye. For mono‐component isotherm modeling, Langmuir and Freundlich models were applied to equilibrium data of single, binary, and ternary dye solutions, while modified Langmuir, Sheindrof–Rebhun–Sheintuch and modified extended Freundlich models were also applied to equilibrium data of binary dye solutions for multi‐component isotherm modeling. The results showed that the Langmuir was the more suitable model for single dye systems while extended Freundlich model fitted best to the experimental data with the lowest error values for multi‐dye systems.  相似文献   

17.
This experimental research deals with using steel scrap as a heterogeneous catalyst. This catalyzes the oxidation reaction of real textile dye wastewater based on a modified solar photo‐Fenton oxidation process. Morphologic analysis and mapping of the elementary composition of the steel scrap have been carried out by scanning electron microscopy. The effects of concentration of H2O2, the pH of the solution and the catalyst loading on the degradation of textile dye wastewater are elucidated. Kinetic studies have been performed for the decolorization of wastewater under optimum conditions. It could be concluded that the steel scrap is a potential substitute for ferrous salts as a catalyst for the solar photo‐Fenton reaction.  相似文献   

18.
Competitive sorption of estriol (E3) and 17α‐ethinylestradiol (EE2) was studied on activated charcoal. Better sorption of E3 (88.9%) and EE2 (69.5%) was observed with single‐solute sorption system than with bi‐solute sorption system. Single‐solute sorption kinetics of E3 and EE2 were evaluated with two (Langmuir and Freundlich) and three (dual mode and Song) parameter models. Freundlich model (R2, 0.9915 (E3); 0.9875 (EE2)) showed good prediction compared to other models for single‐solute sorption. Adsorption capacity documented reduced efficacy (86.4% (E3); 65.9% (EE2)) due to induced competitive behavior between the estrogens in aqueous phase. Bi‐solute adsorption kinetics of E3 and EE2 were described by IAST with two and three parameter models. Among these models, IAST‐Freundlich model (R2, 0.9765 (E3); 0.9985 (EE2)) was best in predicting bi‐solute sorption of E3 and EE2 by activated charcoal. All these models showed favorable representation of both single‐ and bi‐solute sorption behaviors.  相似文献   

19.
The purpose of this work is the removal of basic dyes (Safranine T and Brilliant Green) from aqueous media by depolymerization products (DP) obtained from aminoglycolysis of waste poly(ethylene terephthalate) (PET). The surface morphology and physical properties of depolymerization product were also determined. Adsorption behaviors (adsorption capacities, adsorption kinetics and adsorption isotherms) of these samples were realized at room temperature. Then, the amounts of residual dye concentrations were measured using Visible Spectrophotometer at 530 and 618 nm for Safranine T (ST) and Brilliant Green (BG), respectively. All adsorption experiments were carried out for different depolymerization products (DP1, DP2, DP3, and DP4). Adsorption capacities of depolymerization products for both of dyes decrease with following order: DP2 > DP4 > DP1 > DP3. The maximum adsorption capacities for ST and BG onto DP2 sample were found to be 29 and 33 mg g?1, respectively. In addition, the adsorption kinetic results show that the pseudo‐second‐order kinetic model is more suitable than pseudo‐first‐order model for the adsorption of basic dyes onto DP samples. Adsorption data were evaluated using Langmuir and Freundlich adsorption isotherm models. The results revealed that the adsorption of basic dyes onto DP sample fit very well Langmuir isotherm model. In conclusion, the depolymerization products of post‐consumer PET bottles can be used as low cost adsorbent for the removal of basic dyes from wastewaters.  相似文献   

20.
Decolorization of C.I. Basic Blue 3 (BB3) by oxalate catalyzed photoelectro‐Fenton process based on carbon nanotube‐polytetrafluoroethylene (CNT‐PTFE) electrode as cathode under visible light was studied. A comparison of electro‐Fenton, photoelectro‐Fenton, and photoelectro‐Fenton/oxalate processes for decolorization of the solution containing BB3 has been performed. The results showed that color removal follows the decreasing order: photoelectro‐Fenton/oxalate > photoelectro‐Fenton > electro‐Fenton. Response surface methodology (RSM) was employed to assess individual and interactive effects of the four main independent parameters on the decolorization efficiency. A central composite design (CCD) was employed for optimization of photoelectro‐Fenton/oxalate treatment of BB3. The analysis of variance (ANOVA) showed a high coefficient of determination value (R2 = 0.958) and satisfactory prediction second‐order regression. This study clearly showed that RSM was one of the suitable methods to optimize the operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号