首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The sandstone peak‐forest landscape in Zhangjiajie UNESCO Global Geopark of Hunan Province, China, is characterized by >3000 vertical pillars and peak walls of up to 350 m height, representing a spectacular example of sandstone landform variety. Few studies have addressed the mechanisms and timescales of the longer‐term evolution of this landscape, and have focused on fluvial incision. We use in situ cosmogenic nuclides combined with GIS analysis to investigate the erosional processes contributing to the formation of pillars and peak‐forests, and discuss their relative roles in the formation and decay of the landscape. Model maximum‐limiting bedrock erosion rates are the highest along the narrow fluvial channels and valleys at the base of the sandstone pillars (~83–122 mm kyr?1), and lowest on the peak wall tops (~2.5 mm kyr?1). Erosion rates are highly variable and intermediate along vertical sandstone peak walls and pillars (~30 to 84 mm kyr?1). Catchment‐wide denudation rates from river sediment vary between ~26 and 96 mm kyr?1 and are generally consistent with vertical wall retreat rates. This highlights the importance of wall retreat for overall erosion in the sandstone peak‐forest. In combination with GIS‐derived erosional volumes, our results suggest that the peak‐forest formation in Zhangjiajie commenced in the Pliocene, and that the general evolution of the landscape followed our sequential refined model: (i) slow lowering rates following initial uplift; (ii) fast plateau dissection by headward knickpoint propagation along joints and faults followed by; (iii) increasing contribution of wall retreat in the well‐developed pillars and peak‐forests and a gradual decrease in overall denudation rates, leading to; (iv) the final consumption of pillars and peak‐forests. Our study provides an approach for quantifying the complex interplay between multiple geomorphic processes as required to assess the evolutionary pathways of other sandstone peak‐forest landscapes across the globe. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Catchment‐wide erosion rates were defined using 10Be terrestrial cosmogenic nuclides for the Eastern Cordillera of the Colombian Andes to help determine the nature of drainage development and landscape evolution. The Eastern Cordillera, characterized by a smooth axial plateau bordered by steep flanks, has a mean erosion rate of 11 ± 1 mm/ka across the plateau and 70 ± 10 mm/ka on its flanks, with local high rates >400 mm/ka. The erosional contrast between the plateau and its flanks was produced by the increase in the orogen regional slope, derived from the progressive shortening and thickening of the Eastern Cordillera. The erosion rates together with digital topographic analysis show that the drainage network is dynamic and confirms the view that drainage divides in the Eastern Cordillera are migrating towards the interior of the mountain belt resulting in progressive drainage reorganization from longitudinal to transverse‐dominated rivers and areal reduction of the Sabana de Bogotá plateau. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The textbook concept of an equilibrium landscape, which posits that soil production and erosion are balanced and equal channel incision, is rarely quantified for natural systems. In contrast to mountainous, rapidly eroding terrain, low relief and slow-eroding landscapes are poorly studied despite being widespread and densely inhabited. We use three field sites along a climosequence in South Africa to quantify very slow (2-5 m/My) soil production rates that do not vary across hillslopes or with climate. We show these rates to be indistinguishable from spatially invariant catchment-average erosion rates while soil depth and chemical weathering increase strongly with rainfall across our sites. Our analyses imply landscape-scale equilibrium although the dominant means of denudation varies from physical weathering in dry climates to chemical weathering in wet climates. In the two wetter sites, chemical weathering is so significant that clay translocates both vertically in soil columns and horizontally down hillslope catenas, resulting in particle size variation and the accumulation of buried stone lines at the clay-rich depth. We infer hundred-thousand-year residence times of these stone lines and suggest that bioturbation by termites plays a key role in exhuming sediment into the mobile soil layer from significant depths below the clay layer. Our results suggest how tradeoffs in physical and chemical weathering, potentially modulated by biological processes, shape slowly eroding, equilibrium landscapes. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
We use cosmogenic 10Be and 26Al in both bedrock and fluvial sediments to investigate controls on erosion rates and sediment supply to river basins at the regional scale in the Kimberley, NW Australia. The area is characterised by lithologically controlled morphologies such as cuestas, isolated mesas and extensive plateaus made of slightly dipping, extensively jointed sandstones. All sampled bedrock surfaces at plateau tops, ridgelines, and in the broader floodplain of major rivers over the region show similar slow lowering rates between 0.17 and 4.88 m.Myr-1, with a mean value of 1.0 ± 0.6 m.Myr-1 (n=15), whilst two bedrock samples collected directly within river-beds record rates that are one to two orders of magnitude higher (14.4 ± 1.5 and 20.9 ± 2.5 m.Myr-1, respectively). Bedrock 26Al/10Be ratios are all compatible with simple, continuous sub-aerial exposure histories. Modern river sediment yield lower 10Be and 26Al concentrations, apparent 10Be basin-wide denudation rates ranging between 1.8 and 7.7 m.Myr-1, with a median value of 2.6 m.Myr-1, more than double the magnitude of bedrock erosion rates. 26Al/10Be ratios of the sediment samples are lower than those obtained for bedrock samples. We propose that these depleted 26Al/10Be ratios can largely be explained by the supply of sediment to river basins from the slab fragmentation and chemical weathering of channel gorge walls and plateau escarpments that result in diluting the cosmogenic nuclide concentration in river sediments measured at the basin outlets. The results of a mass-balance model suggest that ~60–90% of river sediment in the Kimberley results from the breakdown and chemical weathering of retreating vertical sandstone rock-walls in contrast to sediment generated by bedrock weathering and erosion on the plateau tops. This study emphasises the value of analysing two or more isotopes in basin-scale studies using cosmogenic nuclides, especially in slowly eroding post-orogenic settings. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
A combination of numerical analysis and 10Be concentrations measured in sediment samples from the high‐relief Torrente catchment, southern Spain, allows us to investigate the sampling requirements for determining erosion rates using cosmogenic nuclides in high‐relief, landslide‐dominated terrain. We use simple modelling to quantify the effect of particle spalling and/or landsliding on erosion rates determined using a cosmogenic in‐situ produced isotope. Analytical results show that the cosmogenic nuclide concentration of a surface experiencing regular detachment of a grain or block may be considered to be in steady state, and ‘in‐situ’ erosion rates estimated, when an appropriate number of spatially independent samples are amalgamated. We present equations that enable calculation of the number of bedrock samples that must be amalgamated for the estimation of mean erosion rates on an outcrop experiencing regular detachment of a grain or chip of thickness L every T years. Our findings confirm that mean catchment erosion rates may be reliably estimated from 10Be concentrations in fluvial sediment in high‐relief rapidly eroding terrain. These catchment‐wide integrated erosion rates can be calculated where erosion is primarily accomplished through shallow (<3 m) spalling processes; where deep‐seated (>3 m) landslides are the dominant mode of erosion only minimum erosion rates can be determined. Lastly, we present erosion rate measurements from the Torrente catchment that reveal variation of two orders of magnitude (0·03–1·6 m ka?1) quantifying the high degree of spatial variation in erosion rates expected within rapidly uplifting catchments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Deciphering the complex interplays between climate, uplift and erosion is not straightforward and estimating present‐day erosion rates can provide useful insights. Glaciers are thought to be powerful erosional agents, but most published ‘glacial’ erosion rates combine periglacial, subglacial and proglacial erosion processes. Within a glaciated catchment, sediments found in subglacial streams originate either from glacial erosion of substratum or from the rock walls above the glacier that contribute to the supraglacial load. Terrestrial cosmogenic nuclides (TCN) are produced by interactions between cosmic ray particles and element targets at the surface of the Earth, but their concentration becomes negligible under 15 m of ice. Measuring TCN concentrations in quartz sand sampled in subglacial streams and in supraglacial channels is statistically compliant with stochastic processes (e.g. rockfalls) and may be used to discriminate subglacial and periglacial erosion. Results for two subglacial streams of the Bossons glacier (Mont Blanc massif, France) show that the proportion of sediments originating from glacially eroded bedrock is not constant: it varies from 50% to 90% (n = 6). The difference between the two streams is probably linked to the presence or absence of supraglacial channels and sinkholes, which are common features of alpine glaciers. Therefore, most of the published mean catchment glacial erosion rates should not be directly interpreted as subglacial erosion rates. In the case of catchments with efficient periglacial erosion and particularly rockfalls, the proportion of sediments in the subglacial stream originating from the supraglacial load could be considerable and the subglacial erosion rate overestimated. Here, we estimate warm‐based subglacial and periglacial erosion rates to be of the same order of magnitude: 0.39 ± 0.33 and 0.29 ± 0.17 mm a?1, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Transient evolution and adjustment to changing tectonic and climatic boundary conditions is an essential attribute of landscapes, and characterizing transient behavior is a key to understanding their dynamics and history. Developing new approaches to detect such transience has been explored by various methods, in particular to identify landscape response to Late Cenozoic and Quaternary climatic changes. Such studies have often focused on regions of high relief and/or active tectonic activity where interferences between tectonic and climatic signals might complicate the interpretation of the observations. We investigated the case of the hillslopes of the Serra do Cipó quartzitic range in SE Brazil in order to detect and quantify transience in a tectonically quiescent landscape over 100-ka timescales. We determined hilltop curvature from a high-resolution digital surface model derived from Pléiades imagery and measured cosmogenic nuclide (10Be and 26Al) concentrations at these hilltop sites. We compare both observations with predictions of hillslope diffusion theory, observing a distinctive signature of an acceleration of denudation. We performed a joint inversion of topographic and isotopic data to retrieve an evolution of the hillslope sediment transport coefficient through time. The timing of the increase in denudation cannot be unequivocally associated with a single climatic event but is consistent with important, climatically modulated fluctuations in precipitation and erosion in this area during the Middle and Late Pleistocene.  相似文献   

8.
Concentrations of in situ-produced cosmogenic 10Be (T1/2=1.5 Myr) were measured in quartz samples from a quartz vein and its connected stone line from the Jardim River basin, Distrito Federal, Brazil, in order to quantify the processes involved in the landscape evolution of that region. The exponential decrease of the 10Be concentrations along the quartz vein, as well as their systematic increase along the stone-line away from the quartz vein, suggests an autochthonous development. Two models allow to estimate the lateral displacement rate. A plugs model assuming that the sample depth, and hence the production rate, is constant, and a burial model assuming that the sample depth, and hence the production rate, varies through time, yield lateral displacement rate of 37±5 and 68±6 m Myr−1, respectively.  相似文献   

9.
The relative chronology of landscape evolution across the unglaciated Appalachian plateaus of Kentucky and Tennessee is well documented. For more than a century, geomorphologists have carefully mapped and correlated upland erosional surfaces inset by wide‐valley straths and smaller terraces. Constraining the timing of river incision into the Appalachian uplands was difficult in the past due to unsuitable dating methods and poorly preserved surface materials. Today, burial dating using the differential decay of cosmogenic 26Al and 10Be in clastic cave sediments reveals more than five million years of landscape evolution preserved underground. Multilevel caves linked hydrologically to the incision history of the Cumberland River contain in situ sediments equivalent to fluvial deposits found scattered across the Eastern Highland Rim erosional surface. Cave sediments correlate with: (1) thick Lafayette‐type gravels on the Eastern Highland Rim deposited between c. 5·7 and c. 3·5 Ma; (2) initial incision of the Cumberland River into the Eastern Highland Rim after c. 3·5 Ma; (3) formation of the Parker strath between c. 3·5 Ma and c. 2·0 Ma; (4) incision into the Parker strath at c. 2 Ma; (5) formation of a major terrace between c. 2·0 Ma and c. 1·5 Ma; (6) shorter cycles of accelerated incision and base level stability beginning at c. 1·5 Ma; and (7) regional aggradation at c. 0·85 Ma. Initial incision into the Appalachian uplands is interpreted as a response to eustasy at 3·2–3·1 Ma. Incision of the Parker strath is interpreted as a response to eustasy at 2·5–2·4 Ma. A third incision event at c. 1·5 Ma corresponds with glacial reorganization of the Ohio River basin. Widespread aggradation of cave passages at c. 0·85 Ma is interpreted as the beginning of intense glacial–interglacial cycling associated with global climate change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Mesas are ubiquitous landforms in arid and semiarid regions and are often characterized by horizontal stratified erodible rocks capped by more resistant strata. The accepted conceptual model for mesa evolution and degradation considers reduction in the width of the mesa flat‐top plateau due to cliff retreat but ignores possible denudation of the mesa flat‐top and the rates and mechanism of erosion. In this study we examine mesas in the northeastern hyperarid Negev Desert where they appear in various sizes and morphologies and represent different stages of mesa evolution. The variety of mesas within a single climatic zone allows examination of the process of mesa evolution through time. Two of the four sites examined are characterized by a relatively wide (200–230 m) flat‐top and a thick caprock whereas the other two are characterized by a much narrower remnant flat‐top (several meters) and thinner caprock. We use the concentration of the cosmogenic nuclide 10Be for: (a) determining the chronology of the various geomorphic features associated with the mesa; and (b) understanding geomorphic processes forming the mesa. The 10Be data, combined with field observations, suggest a correlation between the width of flat‐top mesa and the denudation and cliff retreat rates. Our results demonstrate that: (a) cliff retreat rates decrease with decreasing width of the flat‐top mesa; (b) vertical denudation rates increase with decreasing width of the flat‐top mesa below a critical value (~60 m, for the Negev Desert); (c) the reduction in the width of the flat‐top mesa is driven mainly by cliff retreat accompanied by extremely slow vertical denudation rate which can persist for a very long time (>106 Ma); and (d) when the width of the mesa decreases below a certain threshold, its rate of denudation increases dramatically and mesa degradation is completed in a short time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Past variations in climate and tectonics have led to spatially and temporally varying erosion rates across many landscapes. In this contribution I examine methods for detecting and quantifying the nature and timing of transience in eroding landscapes. At a single location, cosmogenic nuclides can detect the instantaneous removal of material or acceleration of erosion rates over millennial timescales using paired nuclides. Detection is possible only if one of the nuclides has a significantly shorter half‐life than the other. Currently, the only practical way of doing this is to use cosmogenic in situ carbon‐14 (14C) alongside a longer lived nuclide, such as beryllium‐10 (10Be). Hillslope information can complement or be used in lieu of cosmogenic information: in soil mantled landscapes, increased erosion rates can be detected for millennia after the increase by comparing relief and ridgetop curvature. This technique will work as long as the final erosion rate is greater than twice the initial rate. On a landscape scale, transience may be detected based upon disequilibria in channel profiles or ridgetops, but transience can be sensitive to the nature of transient forcing. Where forcing is periodic, landscapes display differing behavior if forcing is driven by changes in base level lowering rates versus changes in the efficiency of either channel or hillslope erosion (e.g. driven by climate change). Oscillations in base level lowering lead to basin averaged erosion rates that reflect a long term average erosion rate despite strong spatial heterogeneity in local erosion rates. This averaging is reflected in 10Be concentrations in stream sediments. Changes in hillslope sediment transport coefficients can lead to large fluctuations in basin averaged erosion rates, which again are reflected in 10Be concentrations. The variability of erosion rates in landscapes where both the sediment transport and channel erodibility coefficients vary is dominated by changes to the hillslope transport coefficient. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Landscapes in areas of active uplift and erosion can only remain soil‐mantled if the local production of soil equals or exceeds the local erosion rate. The soil production rate varies with soil depth, hence local variation in soil depth may provide clues about spatial variation in erosion rates. If uplift and the consequent erosion rates are sufficiently uniform in space and time, then there will be tendency toward equilibrium landforms shaped by the erosional processes. Soil mantle thickness would adjust such that soil production matched the erosion. Previous work in the Oregon Coast Range suggested that there may be a tendency locally toward equilibrium between hillslope erosion and sediment yield. Here results from a new methodology based on cosmogenic radionuclide accumulation in bedrock minerals at the base of the soil column are reported. We quantify how soil production varies with soil thickness in the southern Oregon Coast Range and explore further the issue of landscape equilibrium. Apparent soil production is determined to be an inverse exponential function of soil depth, with a maximum inferred production rate of 268 m Ma?1 occurring under zero soil depth. This rate depends, however, on the degree of weathering of the underlying bedrock. The stochastic and large‐scale nature of soil production by biogenic processes leads to large temporal and spatial variations in soil depth; the spatial variation of soil depth neither supports nor rejects equilibrium morphology. Our observed catchment‐averaged erosion rate of 117 m Ma?1 is, however, similar to that estimated for the region by others, and to soil production rates under thin and intermediate soils typical for the steep ridges. We suggest that portions of the Oregon Coast Range may be eroding at roughly the same rate, but that local competition between drainage networks and episodic erosional events leads to landforms that are out of equilibrium locally and have a spatially varying soil mantle. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
We use cosmogenic 10Be concentrations in amalgamated rock samples from active, ice‐cored medial moraines to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. This dramatic landscape is carved into a small ~65 Ma granitic pluton about 100 km west of Denali, where kilometer‐tall rock walls and ‘cathedral’ spires tower over a radial array of over a dozen valley glaciers. These supraglacial landforms erode primarily by rockfall, but erosion rates are difficult to determine. We use cosmogenic 10Be to measure rockwall backwearing rates on timescales of 103–104 years, with a straightforward sampling strategy that exploits ablation‐dominated medial moraines. A medial moraine and its associated englacial debris serve as a conveyor system, bringing supraglacial rockfall debris from accumulation‐zone valley walls to the moraine crest in the ablation zone. We discuss quantitatively several factors that complicate interpretation of cosmogenic concentrations in this material, including the complex scaling of production rates in very steep terrain, the stochastic nature of the rockfall erosion process, the unmixed nature of the moraine sediment, and additional cosmogenic accumulation during transport of the sediment. We sampled medial moraines on each of three glaciers of different sizes and topographic aspects. All three moraines are sourced in areas with identical rock and similar sidewall relief of ~1 km. Each sample was amalgamated from 25 to 35 clasts collected over a 1‐km longitudinal transect of each moraine. Two of the glaciers yield similar 10Be concentrations (~1·6–2·2 × 104 at/g) and minimum sidewall slope‐normal erosion rates (~0·5–0·7 mm/yr). The lowest 10Be concentrations (8 × 103 at/g) and the highest erosion rates (1·3 mm/yr) come from the largest glacier in the range with the lowest late‐summer snowline. These rates are reasonable in an alpine glacial setting, and are much faster than long‐term exhumation rates of the western Alaska Range as determined by thermochronometric studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Terrestrial cosmogenic nuclide (TCN) concentrations measured in river sediments can be used to estimate catchment‐wide denudation rates. By investigating multiple TCN the steadiness of sediment generation, transport and depositional processes can be tested. Measurements of 10Be, 21Ne and 26Al from the hyper‐ to semi‐arid Rio Lluta catchment, northern Chile, yield average single denudation rates ranging from 12 to 75 m Myr–1 throughout the catchment. Paired nuclide analysis reveals complex exposure histories for most of the samples and thus the single nuclide estimates do not exclusively represent catchment‐wide denudation rates. The lower range of single nuclide denudation rates (12–17 m Myr–1), established with the noble gas 21Ne, is in accordance with palaeodenudation rates derived from 21Ne/10Be and 26Al/10Be ratio analysis. Since this denudation rate range is measured throughout the system, it is suggested that a headwater signal is transported downstream but modulated by a complex admixture of sediment that has been stored and buried at proximal hillslope or terrace deposits, which are released during high discharge events. That is best evidenced by the stable nuclide 21Ne, which preserves the nuclide concentration even during storage intervals. The catchment‐wide single 21Ne denudation rates and the palaeodenuation rates contrast with previous TCN‐derived erosion rates from bedrock exposures at hillslope interfluves by being at least one order of magnitude higher, especially in the lower river course. These results support earlier studies that identified a coupling of erosional processes in the Western Cordillera contrasting with decoupled processes in the Western Escarpment and in the Coastal Cordillera. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Various sources of 21Ne and 22Ne exist in surface rocks:cosmogenic,in situ nucleogenic from internal U and Th,trapped crustal nucleogenic and trapped atmospheric.This paper reports the first measurement,in China,of cosmogenic 21Ne and 22Ne in surface bedrocks.We developed a unique sample pre-treatment procedure that effectively removed inclusions inside quartz grains,and thus maximally reduced nucleogenic contributions of 21Ne and 22Ne.Step-heating experiments show that concen-trations of cosmogenic 21Ne and 22Ne in summit bedrock samples R9202 and R9203 from Grove Mountains,Antarctica,are(3.83±0.87)×108 and(5.22±0.51)×108 atoms/g,respectively.The corresponding minimum exposure ages are 2.2±0.5 and 3.0±0.3 Ma.This indicates that the ice sheet in East Antarctica was uncovered the crest of Mount Harding,a typical nunatak in Grove Mountains,since at least mid-Pliocene.  相似文献   

17.
In situ cosmogenic nuclides are an important tool for quantifying landscape evolution and dating fossil-bearing deposits in the Cradle of Humankind (CoH), South Africa. This technique mainly employs cosmogenic 10-Beryllium (10Be) in river sediments to estimate denudation rates and the ratio of 26-Aluminium (26Al) to 10Be (26Al/10Be), to constrain ages of sediment burial. Here, we use 10Be and 26Al concentrations in bedrock and soil above the Rising Star Cave (the discovery site of Homo naledi) to constrain the denudation rate and the exposure history of soil on the surface. Apparent 10Be-derived denudation rates obtained from pebble- to cobble-sized clasts and coarse-sand in soil (on average 3.59 ± 0.27 m/Ma and 3.05 ± 0.25 m/Ma, respectively) are 2-3 times lower than the bedrock denudation rates (on average 9.46 ± 0.68 m/Ma). In addition, soil samples yield an average 26Al/10Be ratio (5.12 ± 0.27) that is significantly lower than the surface production ratio of 6.75, which suggests complex exposure histories. These results are consistent with prolonged surface residence of up to 1.5 Ma in vertically mixed soils that are up to 3 m thick. We conclude that the 10Be concentrations accumulated in soils during the long near-surface residence times can potentially cause underestimation of single-nuclide (10Be) catchment-wide denudation rates in the CoH. Further, burial ages of cave sediment samples that consist of an amalgamation of sand-size quartz grains could be overestimated if a pre-burial 26Al/10Be ratio calculated from the surface production is assumed. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Estimation of spatially averaged denudation rates from cosmogenic nuclide concentrations in sediments depends on the surface production rates, the scaling methods of cosmic ray intensities, and the correction algorithms for skyline, snow and vegetation shielding used to calculate terrestrial cosmogenic nuclide production. While the calculation of surface nuclide production and application of latitude, altitude and palaeointensity scaling algorithms are subjects of active research, the importance of additional correction for shielding by topographic obstructions, snow and vegetation is the subject of ongoing debate. The derivation of an additional correction factor for skyline shielding for large areas is still problematic. One important issue that has yet to be addressed is the effect of the accuracy and resolution of terrain representation by a digital elevation model (DEM) on topographic shielding correction factors. Topographic metrics scale with the resolution of the elevation data, and terrain smoothing has a potentially large effect on the correction of terrestrial cosmogenic nuclide production rates for skyline shielding. For rough, high‐relief landscapes, the effect of terrain smoothing can easily exceed analytical errors, and should be taken into account. Here we demonstrate the effect of terrain smoothing on topographic shielding correction factors for various topographic settings, and introduce an empirical model for the estimation of topographic shielding factors based on landscape metrics. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

19.
We have measured concentrations of cosmogenic 10Be and 26Al produced in situ at bare bedrock surfaces of successive sheets developing on a granite dome in Korea and calculated the exfoliation rate of sheeting joints. The exfoliation rate was obtained using a simple model in which the sheeting joints experience intermittent denudation, i.e. peeling off along the bedrock face. We find that the average exfoliation (erosion) rate of the episodic peeling‐off process is 5·6 cm/ka?1. The analysis is useful for understanding the evolution of granite sheeting structures on this dome in Korea. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号