首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM‐2 biosorbed maximum amount of Cr6+ (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr3+ was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr6+ and Cr3+ from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates.  相似文献   

2.
To remove chromate from a wastewater, a porous permeable reactive barrier system (PRBS), using pyrite and biotite, was adapted. This study included bench‐scale column experiments to evaluate the efficiency of the PRBS and investigate the reaction process. The total chromium concentration of the effluent from the biotite and pyrite columns reached the influent concentration of 0·10 mM after passing through more than 150 pore volumes (PVs) and 27 PVs respectively, and remained constant thereafter. The CrVI concentration in the effluent from the biotite column became constant at about 0·08 mM , accounting for approximately 80% of the influent concentration, after passing through 200 PVs. Moreover, in the pyrite column, the CrVI concentration remained at about 0·01 mM , 10% of the input level, after passing through 116 PVs. This shows that both columns maintained their levels of chromate reduction once the CrVI breakthrough curves (BTCs) had reached the steady state, though the steady‐state output concentration of total chromium had reached the influent level. The variances of the iron concentration closely followed those of the chromium. The observed data for both columns were fitted to the predicted BTCs calculated by CXTFIT, a program for estimating the solute transport parameters from experimental data. The degradation coefficient µ of the total chromium BTCs for both columns was zero, suggesting the mechanisms for the removal of chromate limit the µ of the CrVI BTCs. The CrVI degradation of the pyrite column (6·60) was much greater than that of the biotite column (0·27). In addition, the CrVI retardation coefficient R of the pyrite column (253) was also larger than that of the biotite column (125). The R values for the total chromium BTCs from both columns were smaller than those of the CrVI BTC. Whereas the total chromium BTC for the pyrite column showed little retardation (1·5), the biotite column showed considerable retardation (80). The results for the 900 °C heat‐treated biotite column were analogous to those of the control column (quartz sand). This suggests that the heat‐treated biotite played no role in the retardation and removal of hexavalent chromium. The parameters of the heat‐treated biotite were calculated to an R of 1·2 and µ of 0·01, and these values confirmed quantitatively that the heated biotite had little effect on the transport of CrVI. These solute transport parameters, calculated by CXTFIT from the data obtained from the column tests, can provide quantitative information for the evaluation of bench‐ or field‐scale columns as a removal technology for CrVI in wastewater or contaminated groundwater. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Synoptic water sampling at a fixed site monitoring station provides only limited ‘snap‐shots’ of the complex water quality dynamics within a surface water system. However, water quality often changes rapidly in both spatial and temporal dimensions, especially in highly polluted urban rivers. In this study, we designed and applied a continuous longitudinal sampling technique to monitor the fine‐scale spatial changes of water quality conditions, assess water pollutant sources, and determine the assimilative capacity for biochemical oxygen demand (BOD) in an urban segment of the hypoxic Wen‐Rui Tang River in eastern China. The continuous longitudinal sampling was capable of collecting dissolved oxygen (DO) data every 5 s yielding a ~11 m sampling interval with a precision of ±0.1 mg L?1. The Streeter and Phelps BOD‐DO model was used to calculate: (1) the oxygen consumption coefficient (K1) required for calibration of water quality models, (2) BOD assimilative capacity, and (3) BOD source and load identification. In the 2014 m river segment sampled, the oxygen consumption coefficient (K1) was 0.428 d?1 (20°C), the total BOD discharge was 916 kg d?1, and the BOD assimilative capacity was 382 kg d?1 when the minimum DO level was set to 2 mg L?1. In addition, the longitudinal analysis identified eight major drainage outlets (BOD point sources), which were verified by field observations. This new approach provides a simple, cost‐effective method of evaluating BOD‐DO dynamics over large spatial areas with rapidly changing water quality conditions, such as urban environments. It represents a major breakthrough in the development and application of water quality sampling techniques to obtain spatially distributed DO and BOD in real time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
利用植物组织培养技术培养水花生愈伤组织并以此为实验材料,研究了不同Cr6+浓度(0、0.1、0.3、0.6、0.9 mmol/L)对水花生愈伤组织中腐胺(putrescine,Put)、亚精胺(spermidine,Spd)、精胺(spermine,Spm)、脯氨酸(Pro)含量及精氨酸脱羧酶(ADC)、鸟氨酸脱羧酶(...  相似文献   

5.
自2005年以来,程海水体的化学需氧量(COD)持续升高,而生化需氧量(BOD)却维持不变,高锰酸盐指数(COD_(Mn))升高也较缓慢.为研究程海COD持续升高的原因,选取程海水体中具有代表性的无机阴离子(Cl~-、F~-、S~(2-)、HCO_3~-)和溶解性有机质(DOM)中不同浓度的胡敏酸(HA)、富里酸(FA)和商品化腐殖酸(SHA),研究其对COD和COD_(Mn)测定的影响,探讨Cl~-和DOM共同存在下对COD测定的影响.结果表明:程海水体中Cl~-浓度对COD存在显著影响,产生的COD值为5.42 mg/L,S~(2-)、F~-和HCO_3~-对COD影响较小;各离子对COD_(Mn)的影响很小;不同浓度梯度的HA、FA和SHA与COD测定结果呈显著线性相关,氧化1 mg C HA、FA和SHA所产生的COD值分别为2.164、1.964和2.362 mg;氧化1 mg C HA和FA所产生的COD_(Mn)值分别为0.646和0.344 mg;DOM对COD测定值的影响显著大于对COD_(Mn)测定值的影响;且一定浓度Cl~-的存在增强了FA与HA对COD测定的影响.该研究为进一步阐明程海COD逐步升高,COD_(Mn)值缓慢升高的内在原因奠定了基础.  相似文献   

6.
With an objective to develop a closed loop wastewater biorefinery, the performance of two free floating aquatic weeds water hyacinth (Eichhornia crassipes, Mart, Solms) and salvinia (Salvinia molesta, Mitchell) is explored when either is used as the main bioagent for treating sewage in “sheet flow root level” (SHEFROL) bioreactors. Both the macrophytes prove to be easy to propagate and maintain while they are able to help in achieving significant primary, secondary, and tertiary treatment steps of greywater in a single step. Water hyacinth is able to remove suspended solids, chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen, soluble phosphorous, zinc, copper, nickel, and manganese to the average extents of 81%, 79%, 43%, 41%, 40%, 36%, 34%, and 29%, respectively. The reduction in COD and BOD levels achieved by salvinia is marginally lesser than by water hyacinth but in terms of the removal of other pollutants, the performance of salvinia is comparable to that of water hyacinth. It is possible to convert the dead or harvested plants to organic fertilizer thus making it a closed-loop system with no waste of its own.  相似文献   

7.
In the present study, the effects of initial COD (chemical oxygen demand), initial pH, Fe2+/H2O2 molar ratio and UV contact time on COD removal from medium density fiberboard (MDF) wastewater using photo‐assisted Fenton oxidation treatment were investigated. In order to optimize the removal efficiency, batch operations were carried out. The influence of the aforementioned parameters on COD removal efficiency was studied using response surface methodology (RSM). The optimal conditions for maximum COD removal efficiency from MDF wastewater under experimental conditions were obtained at initial COD of 4000 mg/L, Fe2+/H2O2 molar ratio of 0.11, initial solution pH of 6.5 and UV contact time of 70 min. The obtained results for maximum COD removal efficiency of 96% revealed that photo‐assisted Fenton oxidation is very effective for treating MDF wastewater.  相似文献   

8.
莼菜(Brasenia schreberi)冬芽对Cr6+污染的抗性反应   总被引:3,自引:0,他引:3  
研究了Cr^6 污染对Shun菜冬芽外部形态及过氧化物酶、硝酸还原酶活性,叶绿素、O^-2、MDA的含量等生理指标的影响,结果显示:Cr^6 对Shun菜毒害机制在于 制酶活性和损害细胞膜系统,在培养第三天时叶绿素的含量随着Cr^6 浓度的增加而降低;过化物酶的活性在10mg/L中最高;硝酸还原酶活性除在5mg/L中的略微升高外,在10-40mg/L之间随着Cr^6 培养浓度的升高而降低;O^-2的含量在5mg/L中的最高,在10mg/L中略高于对照,在随后培养中承学度的升高而降低,MDA的含量变化趋势和O^-2相似。  相似文献   

9.
Bananas are widely cultivated in tropical and subtropical countries and about 220 tons of biomass waste is produced per hectare of banana plantation. Banana pseudostem contains nearly 90% of moisture and about 4–5 m3 sap is generated from one ton of dried stem with high chemical oxygen demand(COD) and biological oxygen demand (BOD). The feasibility of using banana sap as a feedstock to produce ethanol is evaluated in this study. Banana sap is obtained by crushing the pseudostems and concentrated ten times and supplementing with other industrial byproducts such as corn steep liquor(CSL), spent wash (SW), and yeast extract (YE) for ethanol production. Acid and alkali hydrolyzes are performed to enhance the sugar levels of the sap before fermentation. Two different strains of Saccharomyces cerevisiae (MTCC170 and MTCC180) are used for fermentation. In general, supplementation of banana sap with industrial byproducts significantly enhanced the ethanol production. The maximum ethanol production (2.5 g ?1) is observed with concentrated banana sap supplemented with 25% SW (v/v) with MTCC170, which is 16‐fold higher than banana sap alone. Theethanol content is also higher in alkali‐hydrolyzed banana sap supplemented with 25% SW compared to control. These results suggest that banana sap can be used as a renewable source to produce ethanol by supplementing with other industrial byproducts.  相似文献   

10.
A start‐up study for biohydrogen production from palm oil mill effluent (POME) is carried out in a pilot‐scale up‐flow anaerobic sludge blanket fixed‐film reactor (UASFF). A substrate with a chemical oxygen demand (COD) of 30 g L?1 is used, starting with molasses solution for 30 days and followed by a 10% v/v increment of POME/molasses ratio. At 100% POME, a hydrogen content of 80%, hydrogen production rate of 36 L H2 per day, and maximum COD removal of 48.7% are achieved. Bio‐kinetic coefficients of Monod, first‐order, Grau second‐order, and Stover‐Kincannon kinetic models are calculated to describe the performance of the system. The steady‐state data with 100% POME shows that Monod and Stover‐Kincannon models with bio‐kinetic coefficients of half‐velocity constant (Ks) of 6000 mg COD L?1, microbial decay rate (Kd) of 0.0015 per day, growth yield constant (Y) of 0.786 mg volatile suspended solids (VSS)/mg COD, specific biomass growth rate (μmax) of 0.568 per day, and substrate consumption rate of (Umax) 3.98 g/L day could be considered as superior models with correlation coefficients (R2) of 0.918 and 0.989, respectively, compared to first‐order and Grau's second‐order models with coefficients of K1 1.08 per day, R2 0.739, and K2s 1.69 per day, a = 7.0 per day, b = 0.847.  相似文献   

11.
This study attempts to explore the possibility of treating dye solutions containing Disperse Yellow 119 and Disperse Red 167 by Fenton and Fenton under solar‐light oxidation processes. Experiments were conducted to examine the effects of various operating conditions on the performance of the treatment systems. The Fenton results showed that 98.6% spectral absorption coefficient (SAC) and 90.8% chemical oxygen demand (COD) removals were proved at pH 3, 50 mg/L Fe2+, and 75 mg/L H2O2, 15 min oxidation time for Disperse Yellow 119. After 40 min solar irradiation time during Fenton process the SAC removal was 99.1%. COD reduction of about 98.3% was observed at the same time. It was also obtained as 97.8% SAC and 97.7% COD removal with pH 3, 75 mg/L Fe2+, 100 mg/L H2O2, and 25 min oxidation time for Disperse Red 167 at this optimum conditions. For Disperse Red 167 during Fenton under solar light process, after 40 min of solar irradiation time the SAC and COD reduction were obtained 99.3 and 98.4%, respectively.  相似文献   

12.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

13.
The cumulation of chromium(III) and (VI) has been studied in batch cultures of planktonic algae Microcystis incerta, Scedenesmus obliquus, Chlorella kessleri and Chlamydomonas geitleri at different chromium and algal cells concentrations. It has been found that chromium(VI) is practically not cumulated in algae, whereas chromium(III) is very rapidly cumulated in all types of algae investigated. The cumulation factor increases with the decrease of the radius of algae cells and it reaches the value of 106 for Microcystis incerta even after a few hours of contact. The kinetics, the cumulation factors and the capacity of algae to cumulate chromium(III) is practically the same for living as well as for dead cells and therefore it can be concluded that the cumulation of chromium(III) is due predominantly to the chemical sorption on the surface of algal cells.  相似文献   

14.
The removal of chemical oxygen demand (COD) and phenol from olive oil mill wastewaters (OOMW) was investigated experimentally by using conventional Fenton (CFP) and Fenton type processes (FTP) with zero valent iron (ZVI). Different operational parameters such as initial pH, Fe2+, Fe0, and H2O2 concentrations were examined. Kinetic studies in terms of COD and phenol removals for both CFP and FTP were performed. The original pH value (4.6) of OOMW for CFP was found as the optimum pH. The determined optimum conditions are [Fe2+] = 1500 mg L?1, [H2O2] = 1750 mg L?1, and pH = 4.6 for CFP; [Fe0] = 2000 mg L?1, [H2O2] = 2000 mg L?1, and pH = 3 for FTP. 82.4% COD and 62% phenol removals were performed under the optimum conditions by CFP, while 82% COD and 63.4% phenol were removed by FTP. According to the results of kinetic studies, it was observed that COD and phenol were removed by FTP more rapidly, compared to CFP. Consequently, it was determined that both CFP and FTP were effective processes for the pretreatment of OOMW.  相似文献   

15.
A simple, low cost, highly effective, and useful Fenton oxidation treatment of synthetic dye bath waste with pickling liquor as a source of iron (Fe2+ catalyst) is reported. Optimizations of contact time, Fe2+ and H2O2 doses are carried out. Oxidative de‐colorization and degradation of Reactive Blue 4 and Reactive Orange 16 was measured in terms of decrease in absorbance at their wavelength of maximum absorption (RB4, 599 nm; and RO16, 493 nm) and also as reduction in chemical oxygen demand (COD). Approximately, 62% COD was removed in 2 h at optimized doses of Fe2+ (8.95 mM) and H2O2 (61.8 mM) by using pickling waste as a source of Fe2+ catalyst. Similar performance efficiency was observed when neat FeSO4 was used as a source of Fe2+, indicating that pickling liquor can be a low cost source of Fe2+ to treat synthetic dye bath waste by Fenton method.  相似文献   

16.
大泊口位于滇池草海南部,水域面积0.52 km2,平均水深约2 m,作为滇池草海重富营养化水域生态修复示范区,大泊口分别于2015和2019年开展了两期生态修复工程,经过近年来的系统治理,大泊口水生态治理效果初步显现。为分析探究成功修复湖区水质改善、生态系统企稳向好的原因,本研究选择2015年2月—2021年12月共7年的连续监测数据,根据工程开展情况以及水生态状况将大泊口水域划分为4个部分(A1~A4水域),首先分析4个区域内主要的水质指标(悬浮物(SS)、化学需氧量(CODCr)、总磷(TP)、总氮(TN)和叶绿素a(Chl.a))的变化趋势和相关性,其次探究不同类型生态工程的修复效果,最后与草海和外海水域进行对比,分析大泊口的治理效果。结果表明,治理后大泊口A1~A4水域的CODCr、TP和Chl.a稳定下降,CODCr分别降低18.65、27.96、25.26、40.92 mg/L,TP分别降低0.11、0.10、0.11、0.14mg/L,Chl.a分别降低0.037、0.068、0.06...  相似文献   

17.
In this study, the oxidative decolorization of C.I. reactive yellow 145 (RY 145) from synthetic textile wastewater including RY 145 and polyvinyl alcohol by Fenton and sono‐Fenton processes which are the combination of Fenton process with ultrasound has been carried out. The effects of some operating parameters which are the initial pH of the solution, the initial concentration of Fe2+, H2O2, and the dye, temperature, and agitation speed on the color and chemical oxygen demand (COD) removals have been investigated. The optimum conditions have been found as [Fe2+] = 20 mg/L, [H2O2] = 20 mg/L, pH 3 for Fenton process and [Fe2+] = 20 mg/L, [H2O2] = 15 mg/L, pH 3 for sono‐Fenton process by indirectly sonication at 35 kHz ultrasonic frequency and 80 W ultrasonic power. The color and COD removal efficiencies have been obtained as 91 and 47% by Fenton process, and 95 and 51% by sono‐Fenton processes, respectively. Kinetic studies have been performed for the decolorization of RY 145 under optimum conditions at room temperature. It has been determined that the decolorization has occurred rapidly by sono‐Fenton process, compared to Fenton process.  相似文献   

18.
The performance of one pilot‐scale and two full‐scale membrane bioreactors (MBR) were evaluated based on the control of main operational parameters, composition of microbial community and pathogens concentration in the treated outlet. Plants were designed for 0.75 m3/day (A), 60 m3/day (B) and 30 m3/day (C). Inlet and outlet samples were monitored for chemical oxygen demand (COD), biological oxygen demand, total suspended solids, ammonia nitrogen concentration (NH4–N), nitrate nitrogen concentration, total Kjeldahl nitrogen, total phosphorus and phosphate phosphorus concentration concentrations. Plants showed good COD removal: 91.9% for Plant A, 97.8% for Plant B and 94.2% for Plant C. The targeted nitrogenous ion was NH4–N due to the requirements for outlet limits. NH4–N removal was moderate for Plant A (73.3%) and Plant B (86.1%) and excellent for Plant C (>99%). Excellent phosphorus removal was achieved by Plant A (average outlet concentration was 0.7 mg/L, efficiency 84.7%). Unsatisfactory results for phosphorus removal were achieved at the full‐scale plants due to operational problems. The dependency between the extracellular polymeric substances increase and decreasing mixed liquor volatile suspended solids for both lab and full‐scale plants was confirmed. Soluble microbial product concentrations were reduced by 65–68% after coagulant dosage for Plant A. Outlets from the MBR plants were monitored for the presence of pathogens (thermotolerant coliforms, Escherichia coli, intestinal Enterococci and culturable microorganisms at 22 and 37°C). The treated effluent from Plant A, B and C met Czech national legislation regarding reuse criteria (standards) for environment, irrigation and swimming purposes. Plants B and C were not able to achieve requirements for potable water and personal hygiene quality standards.  相似文献   

19.
《Marine pollution bulletin》2013,76(1-2):291-300
Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite–nitrogen (NO2–N), Nitrate–nitrogen (NO3–N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3–N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress.  相似文献   

20.
Dissolved organic matter (DOM) quality and quantity is not measured routinely in‐situ limiting our ability to quantify DOM process dynamics. This is problematic given legislative obligations to determine event based variability; however, recent advances in field deployable optical sensing technology provide the opportunity to address this problem. In this paper, we outline a new approach for in‐situ quantification of DOM quantity (Dissolved Organic Carbon: DOC) and a component of quality (Biochemical Oxygen Demand: BOD) using a multi‐wavelength, through‐flow fluorescence sensor. The sensor measured tryptophan‐like (Peak T) and humic‐like (Peak C) fluorescence, alongside water temperature and turbidity. Laboratory derived coefficients were developed to compensate for thermal quenching and turbidity interference (i.e., light attenuation and scattering). Field tests were undertaken on an urban river with ageing wastewater and stormwater infrastructure (Bourn Brook; Birmingham, UK). Sensor output was validated against laboratory determinations of DOC and BOD collected by discrete grab sampling during baseflow and stormflow conditions. Data driven regression models were then compared to laboratory correction methods. A combination of temperature and turbidity compensated Peak T and Peak C was found to be a good predictor of DOC concentration (R2 = 0.92). Conversely, using temperature and turbidity correction coefficients provided low predictive power for BOD (R2 = 0.46 and R2 = 0.51, for Peak C and T, respectively). For this study system, turbidity appeared to be a reasonable proxy for BOD, R2 = 0.86. However, a linear mixed effect model with temperature compensated Peak T and turbidity provided a robust BOD prediction (R2 = 0.95). These findings indicate that with careful initial calibration, multi‐wavelength fluorescence, coupled with turbidity, and temperature provides a feasible proxy for continuous, in‐situ measurement of DOC concentration and BOD. This approach represents a cost effective monitoring solution, particularly when compared to UV – absorbance sensors and DOC analysers, and could be readily adopted for research and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号