首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Runoff and sediment lost due to water erosion were recorded for 36 (1 m2) plots with varying types of vegetative cover located on sloping gypsiferous fields in the South of Madrid. 75% of the events had maximum 30‐minute intensity (I30) less than 10 mm h?1 in the period studied (1994–2005). As for the vegetative cover, maximum correlation between runoff and soil loss was found in the least protected plots (0–40% cover) during the most intense rainfall events; however, a significant positive correlation was also observed in plots with greater coverage (40–60%). If coverage exceeded 60%, rainfall erosivity declined. The average amount of sediment produced in high‐intensity events was significantly greater (approximately 7 g m?2 per I30 event >10 mm h?1) than that produced in the rest of the moderate‐intensity events (approximately 3 g m?2 per I30 event <10 mm h?1), but due to the high rate of occurrence of the latter throughout the year sediment loss during the period studied totaled 128 g m?2. By comparison, only 40 g m?2 was produced by the I30 events greater than 10 mm h?1. Even though the amount of soil lost is relatively insignificant from a quantitative standpoint, the organic matter content lost in the sediment (six times more than in the soil) is a permanent loss that threatens the development of the surface of the soil in this area when the vegetative cover is less than 40%. The soil here experiences a chronic loss of 0·02 mm annually as a consequence of frequent, moderate events, in addition to any loss produced by extraordinary events, which, though less frequent, are much more erosive. If moderate events are ignored, an important part of soil loss will be lost in the long run. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Depending on the severity of the fire, forest fires may modify infiltration and soil erosion processes. Rainfall simulations were used to determine the hydrological effects of fire on Andisols in a pine forest burned by a wildfire in 2007. Six burned zones with different fire severities were compared with unburned zones. Infiltration, runoff and soil loss were analysed on slopes of 10% and 30%. Forest floor and soil properties were evaluated. Unburned zones exhibited relatively low infiltration (23 and 16 mm h?1 on 10% and 30% slope angles, respectively) and high average runoff/rainfall ratios (43% and 50% on 10% and 30% slope angles, respectively), which were associated with the extreme water repellency of the forest floor. Nonetheless, this layer seems to provide protection against raindrop impact and soil losses were found to be low (8 and 16 g m?2 h?1 for 10% and 30% slope angles, respectively). Soil cover, soil structure and water repellency were the main properties affected by the fire. The fire reduced forest floor and soil repellency, allowing rapid infiltration. Moreover, a significant decrease was noted in soil aggregate stabilities in the burned zones, which limited the infiltration rates. Consequently, no significant differences in infiltration and runoff were found between the burned and the unburned zones. The decrease in post‐fire soil cover and soil stability resulted in order‐of‐magnitude increases in erosion. Sediment rates were 15 and 31 g m?2 h?1 on the 10% and 30% slope angles, respectively, in zones affected by light fire severity. In the moderate fire severity zones, these values reached 65 and 260 g m?2 h?1 for the 10% and 30% slope angles, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Rock fragment cover has long been an important agricultural crop production technique on the Loess Plateau, China. Although this approach plays an important role in controlling hydrological processes and preventing soil erosion, inconsistent results have been recovered in this field. In this study, we investigated the effects of rock fragment cover on infiltration, run‐off, soil erosion, and hydraulic parameters using rainfall simulation in the field in a semi‐arid region of China. Two field plots encompassing 6 rock fragment coverages (0%, 10%, 20%, 25%, 30%, and 40%), as well as 2 rock fragment positions and sizes were exposed to rainfall at a particular intensity (60 mm h?1). The results of this study showed that increasing the rock fragment coverage with rock fragments resting on the soil surface increased infiltration but decreased run‐off generation and sediment yield. A contrasting result was found, however, when rock fragments were partially embedded into the soil surface; in this case, a positive relationship between rock fragment coverage and run‐off rate as well as a nonmonotonic relationship with respect to soil loss rate was recovered. The size of rock fragments also exerted a positive effect on run‐off generation and sediment yield but had a negative effect on infiltration. At the same time, both mean flow velocity and Froude number decreased with increasing rock fragment coverage regardless of rock fragment position and size, whereas both Manning roughness and Darcy–Weisbach friction factor were positively correlated. Results show that stream power is the most sensitive hydraulic parameter affecting soil loss. Combined with variance analysis, we concluded that the order of significance of rock fragment cover variables was position followed by coverage and then size. We also quantitatively incorporated the effects of rock fragment cover on soil loss via the C and K factors in the Revised Universal Soil Loss Equation. Overall, this study will enable the development of more accurate modelling approaches and lead to a better understanding of hydrological processes under rock fragment cover conditions.  相似文献   

6.
An experimental study based on the effects of fire on soil hydrology was developed at the Experimental Station of ‘La Concordia’ (Valencia, Spain). It is located on a calcareous hillside facing SSE and composed of nine erosion plots (4 × 20 m). In summer 2003, after eight years of soil and vegetation recovery from previous fires in 1995 (with three fire treatments: T1 high‐intensity fire, T2 moderate intensity, and T3 not burnt), experimental fires of low intensity were again conducted on the plots already burnt, to study the effects of repeated fires on the soil water infiltration, soil water content and runoff. Infiltration rates and capacities were measured by the mini‐disk infiltrometer method (MDI), assessing the effects of vegetation cover by comparing the under‐canopy microenvironment (UC) and its absence on bare soil (BS), immediately before and after the fire experiments. Soil properties like water retention capacity (SWRC) and water content (SWC) were also determined for the different fire treatments (T1, T2 and T3) and microsites (UC and BS). Hydrological parameters, such as runoff and infiltration rate, were monitored at plot scale from July 2002 to July 2004. In the post‐fire period, data displayed a 20% runoff increase and a decrease in infiltration (18%). Differences in the steady‐state infiltration rate (SSI) and infiltration capacity (IC) were tested with the MDI on the different treatments (T1, T2 and T3), and between the UC and BS microsites of each treatment. After fire, the SSI of the UC soil declined from 16 mm h−1 to 12 mm h−1 on T1, and from 24 mm h−1 to 19 mm h−1 on T2. The IC was reduced by 2/3 in the T1 UC soil, and by half on T2 UC soil. On the BS of T1 and T2, the fire effect was minimal, and higher infiltration rates and capacities were reached. Therefore, the presence/absence of vegetation when burnt influenced the post‐burnt infiltration patterns at soil microscale. On the T3, different rates and capacities were obtained depending on the microsites (UC and BS), with higher SSI (25 mm h−1) and IC (226 mm h−1) on BS than on UC (SSI of 18 mm h−1 and IC of 136 mm h−1). The SWRC and SWC were recovered from 1995 to 2003 (prior to the fires). The 2003 fire promoted high variability on the SWC at pF 0·1, 2 and 2·5, and the SWRC on burnt soils were reduced. To summarize, the IC and SSI post‐fire decreases were related to the lower infiltration rate at plot scale, the significant differences in the SWRC between burnt and control treatments, and the increase in the runoff yield (20%). According to the results, the MDI was a useful tool to characterize the soil infiltration on the vegetation patches of the Mediterranean maquia, and contrary to other studies, on the UC soil, the infiltration rate and IC, when soil was dry, were lower than that obtained on BS. Once the soil gets wet, similar values were found on both microenvironments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Soil hydrology was investigated in the Guadelperalón experimental watershed in order to determine the influence of land use and vegetation cover on runoff and infiltration within the Dehesa land system. Five soil–vegetation units were selected: (1) tree cover, (2) sheep trials, (3) shrub cover, (4) hillslope grass and (5) bottom grass. The results of the simulated rainfall experiments performed at an intensity of 56·6 mm h−1 during one hour on plots of 0·25 m2, and the water drop penetration time test indicate the importance of water repellency in the Dehesa land system under drought conditions. Low infiltration rates (c. 9–44 mm h−1) were found everywhere except at shrub sites and in areas with low grazing pressure. Soil water repellency greatly reduced infiltration, especially beneath Quercus ilex canopies, where fast ponding and greater runoff rates were observed. The low vegetation cover as a consequence of a prolonged drought and grazing pressure, in conjunction with the soil water repellency, induces high runoff rates (15–70 per cent). In spite of this, macropore fluxes were found in different locations, beneath trees, on shrub-covered surfaces, as well as at sites with a dominance of herbaceous cover. Discontinuity of the runoff fluxes due to variations in hydrophobicity causes preferential flows and as a consequence deeper infiltration, especially where macropores are developed. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
In north‐central Oklahoma eastern redcedar (Juniperus virginiana), encroachment into grassland is widespread and is suspected of reducing streamflow, but the effects of this encroachment on soil hydraulic properties are unknown. This knowledge gap creates uncertainty in understanding the hydrologic effects of eastern redcedar encroachment and obstructs fact‐based management of encroached systems. The objective of this study was to quantify the effects of eastern redcedar encroachment into tallgrass prairie on soil hydraulic properties. Leaf litter depth, soil organic matter, soil water repellency, soil water content, sorptivity, and unsaturated hydraulic conductivity were measured near Stillwater, OK, along 12 radial transects from eastern redcedar trunks to the center of the grassy intercanopy space. Eastern redcedar encroachment in the second half of the 20th century caused the accumulation of 3 cm of hydrophobic leaf litter near the trunks of eastern redcedar trees. This leaf litter was associated with increased soil organic matter in the upper 6 cm of soil under eastern redcedar trees (5.96% by mass) relative to the grass‐dominated intercanopy area (3.99% by mass). Water repellency was more prevalent under eastern redcedar than under grass, and sorptivity under eastern redcedar was 0.10 mm s?1/2, one seventh the sorptivity under adjacent prairie grasses (0.68 mm s?1/2). Median unsaturated hydraulic conductivity under grass was 2.52 cm h?1, four times greater than under eastern redcedar canopies (0.57 cm h?1). Lower sorptivity and unsaturated hydraulic conductivity would tend to decrease infiltration and increase runoff, but other factors such as rainfall interception by the eastern redcedar canopy and litter layer, and preferential flow induced by hydrophobicity must be examined before the effects of encroachment on streamflow can be predicted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Soil salinization can occur in many regions of the world. Soil sodicity affects rainfall‐runoff relationships and related erosion processes considerably. We investigated sodicity effects on infiltration, runoff and erosion processes on sodic soil slopes for two soils from China under simulated rainfall. Five sodicity levels were established in a silt loam and a silty clay with clay contents of 8.5% and 46.0%, respectively. The soils, packed in 50 cm × 30 cm × 15 cm flumes at two slope gradients (22° and 35°), were exposed to 60 min of simulated rainfall (deionized water) at a constant intensity of 125 mm h?1. Results showed that, for both soils, increasing soil sodicity had some significant effects on hydrological processes, reducing the infiltration coefficient (pr = ?0.69, P  < 0.01) and the quasi‐steady final infiltration rate (pr = ?0.80, P  < 0.01), and increasing the mean sediment loss (pr = 0.39, P  < 0.05); however, it did not significantly affect the cumulative rainfall to ponding (P  > 0.05). Moreover, increasing sodicity significantly increased the Reynolds number and the stream power (pr = 0.78 and 0.66, P  < 0.01, respectively) of the runoff, decreased Manning roughness and Darcy–Weisbach coefficient (pr = ?0.52 and ?0.52, P  < 0.05, respectively), but did not significantly affect the mean flow velocity, mean flow depth, Froude number and hydraulic shear stress. Stream power was shown to be the most sensitive hydraulic variable affecting sediment loss for both soils. Furthermore, as sodicity increased, the values of critical stream power decreased for both the silt loam (R 2 = 0.29, P  < 0.05) and the silty clay (R 2 = 0.49, P  < 0.05). The findings of this study were applied to a real situation and identified some negative effects that can occur with increasing sodicity levels. This emphasized the importance of addressing the influences of soil sodicity in particularly high risk situations and when predicting soil and water losses.  相似文献   

11.
The 3-D spatial distributions of vegetation are of great significance for water and soil conservation but are rarely concerned in literatures. The live vegetation volume (LVV) was used to relate to water/soil loss under 144 natural erosive rainfall events from 2007 to 2010 in a typical water-eroded area of southern China. Quadratic polynomial regression models were established for five pure tree (Pinus massoniana Lamb) plots between LVV and water (rtmoff)/soil conservation effects (RE/SE). RE/SE corresponds to the ratios of runoff depth/soil loss of the pure tree plots to that of the control plot under each rainfall event. Increasing LVV exhibits descending (DS), descending-ascending (DA), ascending-descending (AD), and ascending (AS) trends in the LVV-RE and LVV-SE curves. The effects of soil conservation on the plots were generally more noticeable than the effects of water conservation, and most of the RE and SE values reflected the positive effects of water and soil conservation. The effects were mainly positive under heavy rains (e.g., rainfall erosivity, R = 140 MJ mm ha-l h, maximum 30 min intensity, I30 = 16 mm h-l), whereas the effects were mainly negative under light rains (e.g., R = 45 MJ mm ha-1 h, I30 = 8 mm h-l). The trees' water/soil conservation effects notably transformed when rainfall erosivity and intensity were lower than the positive or negative effects to a certain threshold. About 50% rainfall events led to obvious transform effects when LVVs were near 0.5 or 0.6. These results are able to aid in the decision making on the forest reconstruction in water-eroded areas.  相似文献   

12.
The contribution of bioturbation to downslope soil transport is significant in many situations, particularly in the context of soil formation, erosion and creep. This study explored the direct flux of soil caused by Aphaenogaster ant mounding, vertebrate scraping and tree‐throw on a wildfire‐affected hillslope in south‐east Australia. This included the development of methods previously applied to Californian gopher bioturbation, and an evaluation of methods for estimating the volume of soil displaced by tree‐throw events. All three bioturbation types resulted in a net downslope flux, but any influence of hillslope angle on flux rates appeared to be overshadowed by environmental controls over the spatial extent of bioturbation. As a result, the highest flux rates occurred on the footslope and lower slope. The overall contribution of vertebrate scraping (57.0 ± 89.4 g m?1 yr?1) exceeded that of ant mounding (36.4 ± 66.0 g m?1 yr?1), although mean rates were subject to considerable uncertainty. Tree‐throw events, which individually cause major disturbance, were limited in their importance by their scarcity relative to faunalturbation. However, tree‐throw might be the dominant mechanism of biotic soil flux on the mid‐slope provided that it occurs at a frequency of at least 2–3 events ha?1 yr?1. Although direct biotic soil flux appears to be geomorphologically significant on this hillslope, such transport processes are probably subordinate to other impacts of bioturbation at this site such as the enhancement of infiltration following wildfire. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Surfactants are chemical compounds that can change the contact angle of a water drop on solid surfaces and are commonly used to increase infiltration into water repellent soil. Since production fields with water repellent soil often contain areas of wettable soil, surfactants applied to such fields worldwide will likely be applied to wettable soil, with unknown consequences for irrigation‐induced erosion, runoff, or soil water relations. We evaluated surfactant and simulated sprinkler irrigation effects on these responses for three wettable, Pacific Northwest soils, Latahco and Rad silt loams, and Quincy sand. Along with an untreated control, we studied three surfactants: an alkyl polyglycoside (APG) in solution at a concentration of 18 g active ingredient (AI) kg?1, a block copolymer at 26 g kg?1, and a blend of the two at 43 g kg?1. From 2005 to 2009 in the laboratory, each surfactant was sprayed at a rate of 46·8 l ha?1 onto each soil packed by tamping into 1·2‐ by 1·5‐m steel boxes. Thereafter, each treated soil was irrigated twice at 88 mm h?1 with surfactant‐free well water. After each irrigation, runoff and sediment loss were measured and soil samples were collected. While measured properties differed among soils and irrigations, surfactants had no effect on runoff, sediment loss, splash loss, or tension infiltration, compared to the control. Across all soils, however, the APG increased volumetric water contents by about 3% (significant at p≤0·08) at matric potentials from 0 to ? 20 kPa compared to the control. With a decrease in the liquid–solid contact angle on treated soil surfaces, surfactant‐free water appeared able to enter, and be retained in pores with diameters ≥ 15 µm. All told, surfactants applied at economic rates to these wettable Pacific Northwest soils posed little risk of increasing either runoff or erosion or harming soil water relations. Moreover, by increasing water retention at high potentials, surfactants applied to wettable soils may allow water containing pesticides or other agricultural chemicals to better penetrate soil pores, thereby increasing the efficacy of the co‐applied materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Field‐saturated soil hydraulic conductivity, Kfs, is highly variable. Therefore, interpreting and simulating hydrological processes, such as rainfall excess generation, need a large number of Kfs data even at the plot scale. Simple and reasonably rapid experiments should be carried out in the field. In this investigation, a simple infiltration experiment with a ring inserted shortly into the soil and the estimation of the so‐called α* parameter allowed to obtain an approximate measurement of Kfs. The theoretical approach was tested with reference to 149 sampling points established on Burundian soils. The estimated Kfs with the value of first approximation of α* for most agricultural field soils (α* = 0.012 mm?1) differed by a practically negligible maximum factor of two from the saturated conductivity obtained by the complete Beerkan Estimation of Soil Transfer parameters (BEST) procedure for soil hydraulic characterization. The measured infiltration curve contained the necessary information to obtain a site‐specific prediction of α*. The empirically derived α* relationship gave similar results for Kfs (mean = 0.085 mm s?1; coefficient of variation (CV) = 71%) to those obtained with BEST (mean = 0.086 mm s?1; CV = 67%), and it was also successfully tested with reference to a few Sicilian sampling points, since it yielded a mean and a CV of Kfs (0.0094 mm s?1 and 102%, respectively) close to the values obtained with BEST (mean = 0.0092 mm s?1; CV = 113%). The developed method appears attractive due to the extreme simplicity of the experiment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Biological soil crusts (BSCs) cover up to 60 to 70% of the soil surface in grasslands after the ‘Grain for Green’ project was implemented in 1999 to rehabilitate the Loess Plateau. However, few studies exist that quantify the effects of BSCs on the soil detachment process by overland flow in the Loess Plateau. This study investigated the potential effects of BSCs on the soil detachment capacity (Dc), and soil resistance to flowing water erosion reflected by rill erodibility and critical shear stress. Two dominant BSC types that developed in the Loess Plateau (the later successional moss and the early successional cyanobacteria mixed with moss) were tested against natural soil samples collected from two abandoned farmland areas. The samples were subjected to flow scouring under six different shear stresses ranging from 7.15 to 24.08 Pa. The results showed that Dc decreased significantly with crust coverage under both moss and mixed crusts. The mean Dc of bare soil (0.823 kg m?2 s?1) was 2.9 to 48.4 times greater than those of moss covered soil (0.017–0.284 kg m?2 s?1), while it (3.142 kg m?2 s?1) was 4.9 to 149.6 times greater than those of mixed covered soil (0.021–0.641 kg m?2 s?1). The relative detachment rate of BSCs compared with bare soils decreased exponentially with increasing BSC coverage for both types of BSCs. The Dc value can be simulated by flow shear stress, cohesion, and BSC coverage using a power function (NSE ≥ 0.59). Rill erodibility also decreased with coverage of both crust types. Rill erodibility of bare soil was 3 to 74 times greater than those of moss covered soil and was 2 to 165 times greater than those of mixed covered soil. Rill erodibility could also be estimated by BSC coverage in the Loess Plateau (NSE ≥ 0.91). The effect of crust coverage on critical shear stress was not significant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Seasonal changes over 2 years (2004–2006) in soil moisture content (θv) of frozen alpine frost meadow soils of the Qinghai‐Tibet plateau permafrost region under three different levels of vegetation cover were investigated. Vegetation cover and air temperature changes had significant effects (synergistic effect) on θv and its distribution in the soil profile. During periods of soil freezing or thawing, the less the vegetation cover, the quicker the temperature drop or rise of soil water, and the shorter the duration of the soil water freeze–thaw response in the active soil layer. Under 30% and 65% vegetation cover the amplitude of variation in θv during the freezing period was 20–26% greater than that under 93% cover, while during the thawing period, it was 1·5‐ to 40·5‐fold greater. The freezing temperature of the surface soil layer, fTs, was 1·6 °C lower under 30% vegetation cover than under 93% vegetation cover. Changes in vegetation cover of the alpine frost meadow affected θv and its distribution, as well as the relationship between θv and soil temperature (Ts). As vegetation cover decreased, soil water circulation in the active layer increased, and the response to temperature of the water distribution across the soil profile was heightened. The quantity of transitional soil phase water at different depths significantly increased as vegetation cover decreased. The influence of vegetation cover and soil temperature distribution led to a relatively dry soil layer in the middle of the profile (0·70–0·80 m) under high vegetation cover. Alpine meadow θv and its pattern of distribution in the permafrost region were the result of the synergistic effect of air temperature and vegetation cover. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A database composed of 673 natural rainfall events with sediment concentration measurements at the field or plot scale was analysed. Measurements were conducted on similar soil type (loess soils prone to sealing phenomenon) to apprehend the variability and complexity involved in interrill erosion processes attributable to soil surface conditions. The effects of the dominant controlling factors are not described by means of equations; rather, we established a classification of potential sediment concentration domain according to combination of the dominant parameters. Thereby, significant differences and evolution trends of mean sediment concentration between the different parameter categories are identified. Further, when parameter influences interact, it allows us to discern the relative effects of factors according to their respective degree of expression. It was shown that crop cover had a major influence on mean sediment concentration, particularly when soil surface roughness is low and when maximum 6‐min intensity of rainfall events exceeds 10 mm h?1: mean sediment concentration decreases from 8·93 g l?1 for 0–20 per cent of coverage to 0·97 g l?1 for 21–60 per cent of coverage. The established classification also indicates that the increase of the maximum 6‐min intensity of the rainfall factor leads to a linear increase of mean sediment concentration for crop cover over 21 per cent (e.g. from 2·96 g l?1 to 14·44 g l?1 for the 1–5 cm roughness class) and to an exponential increase for low crop cover (e.g. from 3·92 g l?1 to 58·76 g l?1 for the 1–5 cm roughness class). The implication of this work may bring perspective for erosion prediction modelling and give references for the development of interrill erosion equation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Soil denitrification in reservoir shoreline wetlands is an important process for removing excess inorganic nitrogen from upland runoff and controlling eutrophication in aquatic ecosystems. As yet, little is known about the influence of vegetation characteristics on the soil denitrification potential in reservoir shoreline wetlands, although vegetation can affect both denitrifying bacteria and soil properties. In this study, we measured the spatial variability of denitrification enzyme activity (DEA) using acetylene block method in shoreline wetlands of the Danjiangkou Reservoir, a water source of the South‐to‐North Water Transfer Project in China. Results indicated that DEA ranged from 0.001 to 2.449 µg N (N2O) g?1 h?1, with a mean of 0.384 µg N (N2O) g?1 h?1. DEA varied significantly among five representative plant communities and the highest DEA (0.248–2.449 µg N (N2O) g?1 h?1) was observed in the Polygonum hydropiper community. Plant biomass and vegetation cover were significantly and positively related to DEA and together explained 44.2% of the total variance. These results suggest that vegetation characteristics should also be considered in assessing soil denitrification capacity and restoring shoreline wetlands for nitrogen pollution removal in the Danjiangkou Reservoir after dam heightening.  相似文献   

19.
Three techniques for obtaining soil water solutions (gravitational and matrical waters extracted using both in situ tension lysimeters and in vitro pressure chambers) and their later chemical analysis were performed in order to know the evolution of the soil‐solution composition when water moves down through the soil, from the Ah soil horizon to the BwC‐ or C‐horizons of forest soils located in western Spain. Additionally, ion concentrations and water volumes of input waters to soil (canopy washout) and exported waters (drainage solutions from C‐horizons) were determined to establish the net balance of solutes in order to determine the rates of leaching or retention of ions. A generalized process of sorption or retention of most components (even Cl?) was observed, from the soil surface to the C‐horizon, in both gravitational and matrical waters, with H4SiO4, Mn2+, Na+, and SO42? being the net exported components from the soil through the groundwater. These results enhance the role of the recycling effect in these forest soils. The net percentages of elements retained in these forest soils, considering the inputs and the outputs balance, were 68% K+, 85% Ca2+, 58% Mg2+, 7% Al3+, 5% Fe3+, 34% Zn2+, 57% Cl?, and 20% NO3?, and about 75% of dissolved organic carbon was mineralized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Fatih Konukcu 《水文研究》2007,21(26):3627-3634
The Penman equation, which calculates potential evaporation, was modified by Staple (1974, Soil Science Society of America Proceedings 38 : 837) to include in it the relative vapour pressure hs of an unsaturated soil to predict actual evaporation from a soil surface. This improved the prediction when the difference between the temperature of the soil surface and ambient air is relatively small. The objectives of this study were (i) to revise it further using the actual temperature of the soil surface and air to provide the upper boundary condition in computing evaporative flux from the soil surface and (ii) to determine the range of water content for which the modified form of the Penman equation is applicable. The method adopted was tested by a series of outdoor experiments with a clay soil. The method of Staple (1974) overestimated the rate of evaporation above the water content 0·14 m3 m?3 (up to 30% deviation), whereas the new method agreed well with the measured rates (maximum 7% deviation). Below 0·14 m3 m?3 water content, both methods underestimated, but the Staple (1974) method deviated more from the measured values: the deviations were above 70% and around 30% for the Staple (1974) and the new methods respectively. Although the new method provided accurate solutions for a wider range of water content from saturation to the lower limit of the liquid phase of a particular soil, the modification did not respond to the vapour phase of the soil moisture. Therefore, in the dry range (i.e. in the vapour phase in which the flow was entirely as vapour), either resistance models or a Fickian equation should be used. Although the effect of salinity on the measured rates was significant, the model erroneously calculated the same rates for both saline and non‐saline conditions. The effect of soil texture can easily be accounted by defining appropriate matric potential water content ψm(θ) and soil relative humidity water content hs(θ) relationships. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号