首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi‐element ion‐pair extraction method was described for the preconcentration of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) ions in environmental samples prior to their determinations by flame atomic absorption spectrometry (FAAS). As an ion‐pair ligand 2‐(4‐methoxybenzoyl)‐N′‐benzylidene‐3‐(4‐methoxyphenyl)‐3‐oxo‐N‐phenyl‐propono hydrazide (MBMP) was used. Some analytical parameters such as pH of sample solution, amount of MBMP, shaking time, sample volume, and type of counter ion were investigated to establish optimum experimental conditions. No interferences due to major components and some metal ions of the samples were observed. The detection limits of the proposed method were found in the range of 0.33–0.9 µg L?1 for the analyte ions. Recoveries were found to be higher than 95% and the relative standard deviation (RSD) was less than 4%. The accuracy of the procedure was estimated by analyzing the two certified reference materials, LGC6019 river water and RTC‐CRM044 soil. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

2.
A selective and sensitive method for the preconcentration, separation, and determination of palladium with flame atomic absorption spectrometry using 4,15‐bis[(4‐methylphenyl)sulfonyl]‐20,21‐dinitro‐2,3,4,5,6,7,9,10,12,13,14,15,16,17‐tetradecahydro‐8,11‐ethano‐1,18,4,8,11,15‐benzodioxa tetraaza cycloicosine (TNACIN) on XAD‐2010 was developed. TNACIN–Pd(II) complex formed acidic aqueous solution (0.075–0.100 M HNO3) was accumulated on XAD‐2010 and then eluted with 1 M HCl in acetone. The effects of some analytical parameters including pH, TNACIN amount, sample volume, eluent type, and concentration, sample flow rate and matrix ions were studied for optimization of the method. Detection limit and precision were calculated for Pd(II). This method was also verified with CRM and internal standard, and satisfactory results were obtained.  相似文献   

3.
Removal of copper, nickel, and zinc ions from synthetic electroplating rinse water was investigated using cationic exchange resin (Ceralite IR 120). Batch ion exchange studies were carried out to optimize the various experimental parameters (such as contact time, pH, and dosage). Influence of co‐existing cations, chelating agent EDTA on the removal of metal ion of interest was also studied. Sorption isotherm data obtained at different experimental conditions were fitted with Langmuir, Freundlich, Redlich–Peterson, and Toth models. A maximum adsorption capacity of 164 mg g?1 for Cu(II), 109 mg g?1 for Ni(II), and 105 mg g?1 for Zn(II) was observed at optimum experimental conditions according to Langmuir model. The kinetic data for metal ions adsorption process follows pseudo second‐order. Presence of EDTA and co‐ions markedly alters the metal ion removal. Continuous column ion exchange experiments were also conducted. The breakeven point of the column was obtained after recovering effectively several liters of rinse water. The treated rinse water could be recycled in rinsing operations. The Thomas and Adams–Bohart models were applied to column studies and the constants were evaluated. Desorption of the adsorbed metal ions from the resin column was studied by conducting a model experiments with Cu(II) ions loaded ion exchange resin column using sulfuric acid as eluant. A novel lead oxide coated Ti substrate dimensionally stable (DSA) anode was prepared for recovery of copper ions as metal foil from regenerated liquor by electro winning at different current densities (50–300 A cm?2).  相似文献   

4.
An on‐line solid phase extraction method for the preconcentration and determination of Cu(II) by flame atomic absorption spectrometry has been described. The procedure is based on the retention of Cu(II) ions at pH 6.0 on a minicolumn packed with Amberlite XAD‐1180 resin impregnated with chrome azurol S. After preconcentration, Cu(II) ions adsorbed on the impregnated resin were eluted by 1 mol L?1 HNO3 solution. Several parameters, such as pH, type of eluent, flow rates of sample and eluent solutions, amount of resin were evaluated. At optimized conditions, for 3.5 min of preconcentration time, the system achieved a detection limit of 1.0 µg L?1, and a relative standard deviation of 1.2% at 0.2 µg mL?1 copper. An enrichment factor of 56‐fold was obtained with respect to the copper determination. The proposed method was successfully validated by the analysis of standard reference material (TMDA 54.4 lake water) and recovery studies. The method was applied to the preconcentration of Cu(II) in natural water samples.  相似文献   

5.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

6.
A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag+ and Pd2+ in various samples. After complexation with 2‐((2‐((1H‐benzo[d]imidazole‐2‐yl)methoxy)phenoxy)methyl)‐1H‐benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X‐114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0·10–5 mol/L BIMPI and 0.036% (w/v) Triton X‐114), calibration graphs were linear in the range of 28.0–430.0 μg/L and 57.0–720.0 μg/L with detection limits of 10.0 and 25.0 μg/L for Ag+ and Pd2+, respectively. The enrichment factors were 35.0 and 28.0 for Ag+ and Pd2+, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples.  相似文献   

7.
In this study, a new sorbent is synthesized using surface imprinting technique. Cu(II)‐imprinted multiwalled carbon nanotube sorbent (Cu(II)‐IMWCNT) is used as the solid phase in the solid‐phase extraction method. After the preconcentration procedure, Cu(II) ions are determined by high‐resolution continuum source atomic absorption spectrometry. A total of 0.1 mol L?1 ethylenediaminetetraacetic acid (EDTA) is used to remove Cu(II) ions from the sorbent surface. The optimum experimental conditions for effective preconcentration of Cu(II), parameters such as pH, eluent type and concentration, flow rate, sample volume, sorbent capacity, and selectivity are investigated. The synthesized solid phase is characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The maximum adsorption capacities of Cu(II)‐IMWCNT and non‐imprinted solid phases are 270.3 and 14.3 mg g?1 at pH 5, respectively. Under optimum experimental conditions for Cu(II) ions, the limit of detection is 0.07 μg L?1 and preconcentration factor is 40. In addition, it is determined to be reusable without significant decrease in recovery values up to 100 adsorption–desorption cycles. Cu(II)‐IMWCNT have a high stability. To check the accuracy of the developed method, certified reference materials, and water samples are analyzed with satisfactory analytical results.  相似文献   

8.
A new separation and preconcentration technique based on coprecipitation of Cu(II) and Ni(II) ions by the aid of Mo(VI)/di‐tert‐butyl{methylenebis[5‐(chlorobenzyl)‐4H‐1,2,4‐triazol‐3,4‐diyl]}biscarbamate (BUMECTAC) precipitate has been established. The Mo(VI)/BUMECTAC precipitate was dissolved by concentrated HNO3 and the solution was completed to 5.0 mL with distilled/deionized water. The levels of the analyte ions were determined by flame atomic absorption spectrometer. The effects of experimental conditions like HNO3 concentration, amount of BUMECTAC and Mo(VI), sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of analyte ions. The preconcentration factors were found to be 40 for Cu(II) and 100 for Ni(II) ions. The detection limits for Cu(II) and Ni(II) ions based on 3σ (N:10) were 0.43 and 0.70 µg L?1, respectively. The relative standard deviations were found to be lower than 4.0% for both analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of two certified reference materials (Environment Canada TM‐25.3 and CRM‐SA‐C Sandy Soil C). The procedure was successfully applied to sea water and stream water as liquid samples and baby food as solid sample in order to determine the levels of Cu(II) and Ni(II) ions.  相似文献   

9.
The coprecipitation method is widely used for the preconcentration of trace metal ions prior to their determination by flame atomic absorption spectrometry (FAAS). A simple and sensitive method based on coprecipitation of Fe(III) and Ni(II) ions with Cu(II)‐4‐(2‐pyridylazo)‐resorcinol was developed. The analytical parameters including pH, amount of copper (II), amount of reagent, sample volume, etc., were examined. It was found that the metal ions studied were quantitatively coprecipitated in the pH range of 5.0–6.5. The detection limits (DL) (n = 10, 3s/b) were found to be 0.68 µg L?1 for Fe(III) and 0.43 µg L?1 for Ni(II) and the relative standard deviations (RSD) were ≤4.0%. The proposed method was validated by the analysis of three certified reference materials (TMDA 54.4 fortified lake water, SRM 1568a rice flour, and GBW07605 tea) and recovery tests. The method was successfully applied to sea water, lake water, and various food samples.  相似文献   

10.
The present article describes As(III) sorption behavior of novel calix[4]arene appended TS‐4 resin. The sorption ability of TS‐4 resin has been evaluated at wide range of pH, i.e., pH 2–14. The maximum As(III) sorption efficiency (95%) was achieved at pH 2, which shows that the TS‐4 resin possesses greater affinity for As(III) at this pH. Column sorption mechanism was evaluated through various operating parameters, i.e., change in concentration, flow rate, bed heights, and pH. The experimental data were also tested against bed depth service time model and from the results; it has been observed that the data is in close agreement with the theoretically calculated values. Thus, from the data it has been revealed that TS‐4 resin has maximum column efficiency of 0.13 mmol g?1. Application of TS‐4 to real samples indicates a slight decrease (2–3%) in extraction efficiency of TS‐4 because of high concentration of total dissolved salts. Thermal behavior was tested by differential scanning calorimetry and it has been observed that TS‐4 resin is stable up to 160°C. TS‐4 resin was found to be regenerable and best regeneration was achieved by using 4% solution of NaOH. It can be deduced from the study that the resin will find its applicability in small as well as industrial scale water purification plants.  相似文献   

11.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   

12.
The present paper proposes the application of multiwalled carbon nanotubes (MWCNTs) as a solid adsorbent for selective separation/preconcentration of silver(I) in water samples prior to flame atomic absorption spectrometry. The procedure is based on the solid phase extraction of Ag(I)–2‐mercaptobenzothiazole chelate on MWCNTs. The elution step is carried out with 5 mL of 2 mol L?1 HNO3 in acetone solution at a flow rate of 1.0 mL min?1. The influences of the various analytical parameters including pH of the solution, eluent type, sample volume, flow rates of eluent, matrix ions were investigated for optimization of the presented procedure. Tests of addition/recovery for analyte ion in real samples were performed with satisfactory results. Preconcentration factor and limit of detection for Ag(I) were 160 and 0.21 µg L?1, respectively. The synthesized MWCNT exhibited excellent stability in eluent solution and its adsorption capacity was 5.4 mg of silver per gram of sorbent. The proposed method was successfully applied to trace silver determination in a variety of environmental water samples.  相似文献   

13.
In the present work, experiments have been carried out with a focus to reduce the volume requirement of solvent by mixing with imidazolium based ionic liquids (ILs) for the solvent extraction of phenol, p‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and pentachlorophenol from aqueous solutions. The effect of aqueous phase pH (2–12), agitation speed (100–450 rpm), solute concentration in feed (2–50 mg/L), temperature (303–333 K), treat ratio (1–11), and 1‐butyl‐3‐methyl imidazolium tetrafluoroborate [Bmim]+[BF4]? volume in tributyl phosphate (TBP; 0–0.7% v/v) on extraction of phenols has been studied and optimized. Parameters like strip phase pH (3–13) and stripping agent concentration (0.001–0.009 N) have also been studied for stripping of phenols from solvent phase. It has been found that 0.5% v/v of ionic liquid [Bmim]+[BF4]? in solvent TBP extracts more than 97.5% of phenol and chlorophenols from aqueous solutions with a treat ratio (aqueous to solvent phase ratio) of 5. Transport mechanism for extraction and stripping of phenol and chlorophenols using ionic liquid [Bmim]+[BF4]? has been discussed. The results show that by appropriate selection of extraction and stripping conditions, it is possible to remove nearly all phenols with a treat ratio of 5.  相似文献   

14.
In this study, 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene ( 3 ) has been prepared by the treatment of calix[4]arene with a secondary amine (4‐benzylpiperidine) and formaldehyde by means of Mannich reaction. The prepared Mannich base ( 3 ) has been grafted onto [3‐(2,3‐epoxypropoxy)‐propyl]‐trimethoxysilane‐modified Fe3O4 magnetite nanoparticles (EPPTMS‐MN) in order to obtain 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy calix[4]arene‐grafted EPPTMS‐MN (BP‐calix[4]arene‐grafted Fe3O4). All new compounds were characterized by a combination of FTIR and 1H‐NMR analyses. The morphology of the magnetic nanoparticles was examined by transmission electron microscopy. Moreover, the studies regarding the removal of arsenate and dichromate ions from the aqueous solutions were also carried out by using 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene in liquid–liquid extraction and BP‐calix[4]arene‐grafted Fe3O4 ( 4 ) in solid–liquid extraction experiments. The extraction results indicated that 3 is protonated at proton‐switchable binding sites in acidic conditions. Hence, facilitating binding of arsenate and dichromate is resulted from both electrostatic interactions and hydrogen bonding. To understand the selectivity of 3 , the retention of dichromate anions in the presence of Cl, NO, and SO anions at pH 1.5 was also examined.  相似文献   

15.
In the present article, a procedure for the simultaneous separation and preconcentration of trace amounts of cadmium and zinc is proposed. It is based on the adsorption of cadmium and zinc ions onto a column of Amberlite XAD‐4 resin loaded with aluminon reagent. Cadmium and zinc ions are quantitatively retained on the column in the pH range from 6.5–7.5, at a flow rate of 2 mL min–1. The cadmium and zinc ions are eluted with 5.0 mL of 5 mol L–1 HNO3 solution. Cadmium and zinc are measured by flame atomic absorption spectrometry (FAAS). In the present case, 0.1 μg of cadmium and 0.5 μg of zinc can be concentrated in the column from 1000 mL of aqueous sample, where their concentrations are as low as 0.1 and 0.5 ng mL–1, respectively. The relative standard deviations, for seven replicated determinations of 1.0 μg mL–1 of cadmium and zinc, are 1.2 and 1.1%, respectively. The detection limits for cadmium and zinc in the original solution are 0.02 and 0.11 ng mL–1, respectively. The interference of a large number of anions and cations has been studied and the optimized conditions are utilized for the determination of trace amounts of cadmium and zinc in different environmental and standard samples.  相似文献   

16.
A simple and reliable method for rapid and selective extraction and determination of trace levels of Ni2+ and Mn2+ was developed by ionic liquid (IL) based dispersive liquid–liquid microextraction coupled to flame atomic absorption spectrometry (FAAS) detection. The proposed method was successfully applied to the preconcentration and determination of nickel and manganese in soil, vegetable, and water samples. After preconcentration, the settled IL‐phase was dissolved in 100 µL of ethanol and aspirated into the FAAS using a home‐made microsample introduction system. Injection of 50 µL of each analyte into an air–acetylene flame provided very sensitive spike‐like and reproducible signals. Effective parameters such as pH, amount of IL, volume of the disperser solvent, concentration of the chelating agent, and effect of salt concentration were inspected by a (25‐1) fractional factorial design to identify the most important parameters and their interactions. Under optimum conditions, preconcentration of 10 mL sample solution permitted the detection of 0.93 µg L?1 Ni2+ and 0.52 µg L?1 Mn2+ with enrichment factors 77.2 and 82.6 for Ni2+ and Mn2+, respectively. The accuracy of the procedure was evaluated by analysis of a certified reference material (CRM TMDW‐500, drinking water).  相似文献   

17.
Biosorption using activated sludge biomass (ASB) as a potentially sustainable technology for the treatment of wastewater containing different metal ions (Cd(II), Pb(II) and Zn(II)) was investigated. ASB metal uptake clearly competed with protons consumed by microbial biomass compared with control tests with non‐activated sludge biomass. Biosorption tests confirmed maximum exchange between metal ions and protons at pH 2.0–4.5. It was revealed by the study that the amount of metal ions released from the biomass increased with biomass sludge concentration. The result showed that maximum absorption of metal ions was observed for Cd(II) at pH 3.5, Pb(II) at pH 4.0, and pH 4.5 for Zn(II) ions. The maximum absorption capacities of ASB for Cd(II), Pb(II) and Zn(II) were determined to be 59.3, 68.5 and 86.5%, respectively. The biosorption of heavy metals was directly proportional to ASB stabilization corresponding to a reduction in heavy metals in the order of Cd < Pb < Zn. The order of increase of biosorption of metal ions in ASB was Zn(II) < Pb(II) < Cd(II), and this was opposite to that of non active sludge. The results indicate that ASB is a sustainable tools for the bioremediation of Cd(II), Pb(II) and Zn(II) ions from industrial sludge and wastewater treatment plants.  相似文献   

18.
The adsorption of Cu(II) ions from aqueous solutions by soda lignin as an absorbent using a batch adsorption system is presented in this paper. The soda lignin used in this study was extracted from black liquor derived from oil palm empty fruit bunches (EFB) using 20% v/v sulfuric acid. The effects of varying experimental parameters such as pH value, adsorbent dosage, different concentrations of Cu(II) ions, and agitation period were investigated. The results revealed that the optimum adsorption of Cu(II) onto soda lignin was recorded at a pH of 5.0 at an adsorbent dosage of 0.5 g soda lignin and an agitation period of 40 min. The adsorption capacities and rates of Cu(II) ions onto soda lignin was evaluated. The Langmuir and Freundlich adsorption models were applied to calculate the isotherm constants. It was found that the adsorption isothermal data could be well interpreted by the Freundlich model. The kinetic experimental data properly correlated with the pseudo‐second‐order kinetic model, which implies that chemical sorption is the rate‐limiting step.  相似文献   

19.
A rapid and sensitive method for the determination of trace levels cadmium in water samples by flame atomic absorption spectrometry was developed. It is based on the online sorption of Cd(II) ions on a microcolumn packed with HCl treated bamboo charcoal. In a pH range of 5.0–7.5, Cd(II) ions were effectively retained on the microcolumn, which exhibited fast kinetics, permitting the use of high sample flow rates up to at least 12.8 mL/min without the loss of retention efficiency. The retained Cd(II) ions were quantitatively eluted with HCl (2.0 mol/L) for an online determination. With a preconcentration time of 80 s at a sample loading flow rate of 8.6 mL/min, a sensitivity enhancement factor of 63 was obtained compared with the slope of the linear portion of the calibration curves before and after preconcentration. The calibration graph using the preconcentration system for cadmium was linear with a correlation coefficient of 0.9997, at levels from 1–40 ng/mL. The precision (RSD) for 11 replicate measurements were 3.2% for the determination of 5 ng/mL Cd(II) and 1.8% for 20 ng/mL Cd(II), respectively, and the detection limit (3s) was 0.36 ng/mL. The accuracy was assessed through the determination of a certified reference material, and also through recovery experiments.  相似文献   

20.
Sorptive removal of Ni(II) from electroplating rinse wastewaters by cation exchange resin Dueolite C 20 was investigated at the temperature of 30°C under dynamic conditions in a packed bed. The effects of sorbent bed length 0.1–0.2 m, fixed flow rate 6 dm3 min?1, and the initial rinse water concentration (C0) 53.1 mg L?1 on the sorption characteristics of Dueolite C 20 were investigated at an influent pH of 6.5. More than 94.5% of Ni(II) was removed in the column experiments. The column performance was improved with increasing bed height and decreasing the flow rate. The Thomas, Yoon–Nelson, Clark, and Wolborska models were applied to the experimental data to represent the breakthrough curves and determine the characteristic design parameters of the column. The sorption performance of the Ni(II) ions through columns could be well described by the Thomas, Yoon–Nelson, and Wolborska models at effluent‐to‐influent concentration ratios (C/C0) >0.03 and <0.99. Among the all models, the Clark model showed the least average percentage time deviation. The sorptive capacity of electroplating rinse water using Ni(II) was found to be 45.98 mg g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号