首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential analysis of hydrochemical data for watershed characterization   总被引:4,自引:0,他引:4  
Thyne G  Güler C  Poeter E 《Ground water》2004,42(5):711-723
A methodology for characterizing the hydrogeology of watersheds using hydrochemical data that combine statistical, geochemical, and spatial techniques is presented. Surface water and ground water base flow and spring runoff samples (180 total) from a single watershed are first classified using hierarchical cluster analysis. The statistical clusters are analyzed for spatial coherence confirming that the clusters have a geological basis corresponding to topographic flowpaths and showing that the fractured rock aquifer behaves as an equivalent porous medium on the watershed scale. Then principal component analysis (PCA) is used to determine the sources of variation between parameters. PCA analysis shows that the variations within the dataset are related to variations in calcium, magnesium, SO4, and HCO3, which are derived from natural weathering reactions, and pH, NO3, and chlorine, which indicate anthropogenic impact. PHREEQC modeling is used to quantitatively describe the natural hydrochemical evolution for the watershed and aid in discrimination of samples that have an anthropogenic component. Finally, the seasonal changes in the water chemistry of individual sites were analyzed to better characterize the spatial variability of vertical hydraulic conductivity. The integrated result provides a method to characterize the hydrogeology of the watershed that fully utilizes traditional data.  相似文献   

2.
Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake-groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike-and-Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from <0.2 to >0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.  相似文献   

3.
In the study, multivariate statistical methods including principal component analysis (PCA)/factor analysis (FA) and cluster analysis (CA) were applied to analyze surface water quality data sets obtained from the Huaihe River segment of Bengbu (HRSB) and generated during 2 years (2011–2012) monitoring of 19 parameters at 7 sampling sites. The results of PCA for 7 sampling sites revealed that the first four components of PCA showed 94.89% of the total variance in the data sets of HRSB. The Principal components (Factors) obtained from FA indicated that the parameters for water quality variations were mainly related to heavy metals (Pb, Mn, Zn and Fe) and organic related parameters (COD, PI and DO). The results revealed that the major causes of water quality deterioration were related to inflow of industrial, domestic and agricultural effluents into the Huaihe River. Three significant sampling locations—(sites 2, 3 and 4), (sites 1 and 5) and (sites 6 and 7)—were detected on the basis of similarity of their water quality. Thus, these methods were believed to be valuable to help water resources managers understand complex nature of water quality issues and determine the priorities to improve water quality.  相似文献   

4.
Joshua C. Koch 《水文研究》2016,30(21):3918-3931
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post‐snowmelt water budgets. A water budget focused only on post‐snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid‐summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra‐permafrost subsurface inflows from basin‐edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite‐derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modelling. We observed gradients in water surface elevation between neighbouring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to ‘fill‐and‐spill’ over topographic depressions (surface sills), as we observed for the Twelvemile‐Buddy Lake pair following a May 2013 ice‐jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill‐and‐spill) to shallow groundwater flow (‘fill‐and‐seep’). Such a shift is possible in the next several hundred years of ground surface warming and may bring about more synchronous water level changes between neighbouring lakes following large flood events. This relationship offers a potentially useful tool, well suited to remote sensing, for identifying long‐term changes in shallow groundwater flow resulting from thawing of permafrost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood‐dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re‐suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations.  相似文献   

8.
Water Resources - The present study is an attempt to apply principal component analysis (PCA) for spatial assessment of water quality parameters that are responsible for water quality deterioration...  相似文献   

9.
The link between spatiotemporal patterns of stream water chemistry and catchment characteristics for the mesoscale Dill catchment (692 km2) in Germany is explored to assess the catchment scale controls on water quality and to characterize water sources. In order to record the spatiotemporal pattern, ‘snapshot sampling’ was applied during low, mean and high flow, including 73 nested sites throughout the catchment. Water samples were analysed for the elements Li, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Mo, Ba, Pb and U using inductively‐coupled‐plasma mass spectrometry, and for electric conductivity and pH. Principle component analysis and hierarchical cluster analysis were used to find typical element associations and to group water samples according to their hydrochemical fingerprints. This revealed regional hydrochemical patterns of water quality which were subsequently related to catchment attributes to draw conclusions about the controls on stream chemistry. It was found that various lithologic signals and anthropogenic point source inputs controlled the base flow hydrochemistry. During increased flows, stream waters were diluted causing additional hydrochemical variability in response to heterogeneous precipitation inputs and differences in aquifer storage capacities. The hydrochemical patterns further displayed in‐stream mixing of waters. This implied, that stream waters could be apportioned to the identified water sources throughout the catchment. The basin‐wide hydrochemical variability has the potential to outrange the tracer signatures typically inferred in studies at the hillslope scale and is able to strongly influence the complexity of the catchment output. Both have to be considered for further catchment scale tracer and modelling work. Despite the likelihood of non‐conservative behaviour, the minor and trace elements enhanced the rather qualitative discrimination of the various groundwater types, as the major cations were strongly masked by point source inputs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Time series of weekly water‐quality data at Schnackenburg on the Elbe River (1985—2000) were subjected to principal component analysis (PCA). Considering the amplitudes of composite patterns of variables is a step towards a process‐oriented interpretation of waterquality data. One specific objective was to investigate the impact of improved water quality after the German reunification in 1990 on primary production and the oxygen budget. To discriminate anthropogenic signals from natural fluctuations a separation of the impact of discharge was attempted based on a linear regression approach. A dominant pattern of co‐variation in the residual data could be attributed to biological activity (primary production). The most relevant variables of this 'biomode' are oxygen saturation, pH, and orthophosphate. We conclude that multivariate statistical analysis of water‐quality data can help to estimate primary production when direct observations of algal concentrations are missing. In the years from 1998—2000 the trend of the ‘biomode’ indicates an increased load of oxygen consuming biomass caused by enhanced primary production in the middle stretches of the Elbe River which corresponds with the observation of more severe oxygen deficits in the tidal section of the river.  相似文献   

11.
Coastal lakes have a specific hydrological regime determined by the influence of sea and inland water and the local hydrographic conditions. There are several problems concerning the protection and assessment of water quality of these bodies. The most important features differentiating coastal lakes from other lakes are: high salinity, a wide range of seasonal and short-term water quality changes, and specific aquatic ecosystems adapted to these conditions. These matters have not been sufficiently taken into account in the existing classifications and typologies of lakes in Poland. The problem has not been solved by the establishment of the adequate reference conditions and new guidelines for the classification of water status (which are being prepared according to the Common Strategy for the Implementation of the Water Framework Directive) regarding inland surface waters (rivers and lakes) and marine waters (coastal and transitional). An important issue is to define criteria which would help to distinguish all those hydrographic objects and to establish water quality standards for them.  相似文献   

12.
The alkaline filter elution assay using the gills of the freshwater clam species Corbicula fluminea detects breaks in single‐stranded DNA and is thus a good method for determining the genotoxic potential of surface waters. In attempting to standardize the procedure, a wide range of factors which could have an influence on the uptake of genotoxic substances by the exposed clams were studied. The most important parameters of the static exposure in relation to the rate of filtration by the animals turned out to be the temperature, the volume of the water, and the exposure time. Differences in body size and in the amount of suspended particles in surface waters did not play a significant role. The results demonstrate that the in vivo test system can be quite sensitive and its results reproducible when the relevant species‐specific characteristics of the test organisms are brought into consideration, even if the test organism belongs to a biologically more advanced group. A clear dose‐response relationship to the reference substances 4‐nitroquinoline‐1‐oxide (NQO) and N‐methyl‐N‐nitro‐N‐nitrosoguanidine (MNNG) can be observed even after a short exposure time of between four and twenty hours. No genotoxic effects were observed when using this method on surface waters from the area of Cologne (including water from the Rhine River and within the protection zone 2 of the Cologne waterworks).  相似文献   

13.
云贵高原湖泊水质现状及演变   总被引:16,自引:6,他引:10  
利用2008年云贵高原13个湖泊丰水期的全面水质调查数据,系统分析云贵高原湖泊水质现状,通过与历史资料对比,揭示20年来的水质变化,并分析水质变化的原因.同时利用主成分分析将23个水质参数概括为6个主要成分,除程海外所有湖泊水质均与第一主成分密切相关.人类活动影响下的水体富营养化、有机污染以及农业面源污染等是除程海外湖泊污染的主要驱动因子,程海水质变化主要受水体的矿化度增加所驱动.另外,根据各主成分得分,本文也对13个湖泊水质进行了综合评价,并在评价的基础上就湖泊的保护和治理提出建议.  相似文献   

14.
A method is proposed to establish regional design hyetographs for facilitating the determination of design hyetographs at ungauged sites. The method is applied to the central area of Taiwan. First, the single‐station design hyetographs at all rain gauges are analysed using principal components analysis and cluster analysis. The principal components analysis shows that there are six dominant factors, and the cluster analysis indicates that the time to peak rainfall has the largest influence on the classification of hyetographs. It also shows that the single‐station hyetographs in the study area can be classified into three clusters. Finally, the homogeneous regions for these three clusters are delineated and the corresponding regional design hyetographs are proposed. Once the homogeneous regions and the regional hyetographs are available, the design hyetograph at the point of interest can be easily determined. The proposed method is expected to be useful for providing the design hyetographs at ungauged sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The New EC Framework Water Directive: Assessment of the Chemical and Ecological Status of Surface Waters The main objective of the draft EC Framework Water Directive is the good quality of all surface waters. The directive provides for an assessment of the chemical status of surface waters (EU‐wide valid environmental quality standards for approximately 30 priority substances) and a five‐stage ecological classification of waters, comprising the stages high, good, moderate, poor, and bad. The starting point for the assessment are the reference conditions, which are defined as corresponding to high water quality and characterising a water status with no significant anthropogenic impact. The reference sites in the various water body types are to be selected using hydromorphological and physico‐chemical parameters and subsequently characterised by means of biological parameters. For surface waters, three groups of characteristics are provided for, namely: 1. with priority the biology – in the case of surface waters – with the four elements phytoplankton, macrophytes/phytobenthos, benthic invertebrate fauna, and fish fauna; 2. supporting the hydromorphology, e.g. flowing waters with the three elements hydrological regime, river continuity, and morphological conditions and 3. supporting the physico‐chemical conditions with the three elements general conditions, specific synthetic pollutants, and specific non synthetic pollutants (other than the priority substances of the chemical status).  相似文献   

16.
The ground water flow path of the coastal area in the Yellow Sea, Korea, was interpreted using both the cross‐correlation analysis of hydraulic properties and the principal component analysis (PCA) of ground water chemistry. Data was obtained from observation wells in the underground liquefied petroleum gas (LPG) cavern constructed in the coastal area of Pyeongtaek. Cross‐correlation results showed that the operating pressure became more influenced on artificial factors for the variation of the groundwater level of the study area (45–66% of correlation coefficient) even though its affecting area was limited to the region with fractures or faults, and also showed that the delay time from the variation of operating pressure to the fluctuation of ground water level were relatively long periods (28–31 days). Three hydrogeochemical events (encrusted cement dissolution, host rock dissolution, and seawater intrusion), which were dominantly influenced on ground water quality, could be induced from the result of PCA. Quantitative evaluation for these events using the mixed equation with principal component scores suggest that the dissolution of encrusted cement materials was the predominant factor (39·0% of the total mixed proportion) to change the chemical composition of the seepage water during the ground water flow from the observation wells to the cavern. Integration of the statistical results also imply that ground water flow and hydrogeochemistry were predominantly affected by artificial factors such as cavern operation pressure and dissolution of encrusted cement materials, which were interdependent factors on the observation wells with high cross‐correlation coefficients and pH. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The molecular characteristics of dissolved organic matter (DOM) reflect both its source material and its biogeochemical history. In glacial systems, DOM characteristics might be expected to change over the course of a melt season as changes in the glacier drainage system cause the mobilization of DOM from different OM pools. To test this hypothesis we used Principal Components Analysis (PCA) of synchronous fluorescence spectra to detect and describe changes in the DOM in meltwater from a glacier system in the Coast Mountains of northern British Columbia, Canada. For most of the melt season, the dominant component of subglacially routed meltwater DOM is characterized by a tyrosine‐like fluorophore. This DOM component is most likely derived from supraglacial snowmelt. During periods of high discharge, a second component of DOM is present which is humic in character and similar to DOM sampled from a nearby non‐glacial stream. This DOM component is inferred to be derived from a moss‐covered soil environment that has been glacially overrun. It is probably entrained into glacial melt waters when the supraglacial meltwater flux exceeds the capacity of the principal subglacial drainage channels and water floods areas of the glacier bed that are normally isolated from the subglacial drainage system. Another source of DOM also appears to be mobilized during periods of high air temperatures. It is characterized by both humic and proteinaceous fluorophores and may be derived from the drainage of supraglacial cryoconite holes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Environmental isotopes (δ18O, δD and 3H) were used to understand the hydrodynamics of Lake Naini in the State of Uttar Pradesh, India. The data was correlated with the in situ physico‐chemical parameters, namely temperature, electrical conductivity and dissolved oxygen. The analysis of the data shows that Lake Naini is a warm monomictic lake [i.e. in a year, the lake is stratified during the summer months (March/April to October/November) and well mixed during the remaining months]. The presence of a centrally submerged ridge inhibits the mixing of deeper waters of the lake's two sub‐basins, and they exhibit differential behaviour. The rates of change of isotopic composition of hypolimnion and epilimnion waters of the lake indicate that the water retention time of the lake is very short, and the two have independent inflow components. A few groundwater inflow points to the lake are inferred along the existing fractures, fault planes and dykes. In addition to poor vertical mixing of the lake due to the temperature‐induced seasonal stratification, the lake also shows poor horizontal mixing at certain locations of the lake. The lake–groundwater system appears to be a flow‐through type. Also, a tritium and water‐balance model was developed to estimate the water retention time of well‐mixed and hydrologically steady state lakes. The model assumes a piston flow of groundwater contributing to the lake. The developed model was verified for (a) Finger Lakes, New York; (b) Lake Neusiedlersee, Austria; and (c) Blue Lake, Australia based on literature data. The predicted water retention times of the lakes were close to those reported or calculated from the hydrological parameters given in the references. On application of this model to Lake Naini, a water retention time of ~2 years and age of groundwater contributing to the lake ~14 years is obtained. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, cluster analysis (CA), principal component analysis (PCA) and the fuzzy logic approach were employed to evaluate the trophic status of water quality for 12 monitoring stations in Daya Bay in 2003. CA grouped the four seasons into four groups (winter, spring, summer and autumn) and the sampling sites into two groups (cluster DA: S1, S2, S4-S7, S9 and S12 and cluster DB: S3, S8, S10 and S11). PCA identified the temporal and spatial characteristics of trophic status in Daya Bay. Cluster DB, with higher concentrations of TP and DIN, is located in the western and northern parts of Daya Bay. Cluster DA, with the low Secchi, is located in the southern and eastern parts of Daya Bay. The fuzzy logic approach revealed more information about the temporal and spatial patterns of the trophic status of water quality. Chlorophyll a, TP and Secchi may be major factors for deteriorating water quality.  相似文献   

20.
This paper presents the results of the statistical analysis of a set of physico-chemical and biological water quality parameters, monthly collected from 2000 to 2007 in the Genoa Harbour area (Ligurian Sea). We applied multivariate methods, such as principal component analysis (PCA) and dynamic factor analysis (DFA) for investigating the spatial and temporal variability and for providing important background information on pollution problems in the region. PCA evidenced the role of the sewage and river discharges and of the exchanges with the open sea in determining the harbour water quality. DFA was used to estimate underlying common trends in the time series. The DFA results partly show a general improvement of water quality over the 8-years period. However, in other areas, we found inter-annual variations but no significant multi-annual trend. Furthermore, we included meteorological variables in our statistical analyses because of their potential influence on the water quality parameters. These natural forcings explain part of the variability in water quality parameters that are superimposed on the dominating anthropogenic pollution factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号