首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The oxidation of organophosphorus pesticides (OPPs), such as malathion and parathion, in aqueous solution was studied using conventional ozonation (O3), photolytic ozonation (O3/UV, O3/UV/H2O2), and heterogeneous catalytic ozonation (O3/TiO2/UV) processes. Experiments were performed in batch mode at laboratory scale and processes were compared in terms of disappearance kinetics. The best results of pesticide mineralization were obtained when TiO2 particles in combination with ozone (O3) and UV photolysis (λ = 254 nm) were applied. Decomposition of 99% of parent compounds were achieved in 10 min and oxon derivatives were completely removed in 30 min. The initial reaction rate increases linearly with increasing catalyst amount. Toxicity measurements of the treated solutions were carried out in order to evaluate the efficiency of the treatment methods. No detoxification was achieved for O3 and O3/UV applications. Heterogeneous photocatalytic ozonation was shown to be feasible for achieving complete decomposition of OPPs and their oxon intermediates.  相似文献   

2.
The photocatalytic decolorization and mineralization of Reactive Black 5 (RB5) dye in presence of TiO2 Degussa P25 has been studied using artificial light radiation in a shallow pond slurry reactor. The equilibrium adsorption of dye, influence of pH (3–11), catalyst load (0.5–3.0 g/L), and dye concentration (20–100 mg/L) on decolorization kinetics were studied. The effect of area to volume ratio of photoreactor on decolorization kinetics has been also studied. Mineralization studies were performed at optimized conditions of pH (3) and catalyst load (1.5 g/L). The maximum adsorption (26.5 mg/g) of dye was found to occur at pH 3. The apparent pseudo first order decolorization rate constant (kapp) value followed the order pH 3 > pH 11 > pH 9 > pH 7. As compared to available literature reduction in total organic carbon (TOC) was minimal by the time there was complete decolorization. Initial reduction in TOC was followed by subsequent increasing trend till complete decolorization. Final decreasing trend in TOC was observed only after complete decolorization. Twelve hours of treatment under experimental conditions reduced TOC content by 70% only. Discussion of results suggest that photocatalytic treatment of colored effluent under low UV intensity, and low A/V ratio may result in completely decolorized effluent but still having high COD.  相似文献   

3.
Solar photocatalytic decolorization and detoxification of batik dye wastewater using titanium dioxide (TiO2) immobilized on poly‐3‐hydroxybutyrate (P(3HB)) film was studied. The effects of initial dye concentration, catalyst concentration, P(3HB) film thickness, and fabrication methods of the nanocomposite films were evaluated against methylene blue, a standard organic dye. It was observed that 0.4 g of P(3HB)‐40 wt% TiO2 removed 96% of the color under solar irradiation. P(3HB) and TiO2, mixed concurrently in chloroform followed by stirring for 24 h showed a more even distribution of the photocatalyst on the polymer surface and yielded almost 100% color removal. The photocatalytic films were able to completely decolorize real industrial batik dye wastewater in 3 h and induced a chemical oxygen demand (COD) reduction of 80%. Reusability of the 0.4 g P(3HB)‐40 wt% TiO2 film in decolorizing the batik dye wastewater was also possible as it gave a high consistent value of decolorization percentage (>80%) even after the sixth repeated usage. Recovery step of the photocatalysts was also not required in this simple treatment system. The decolorized batik dye wastewater had less/no toxic effects on mosquito larvae, Aedes aegypti, and microalgae, Scenedesmus quadricauda indicating simultaneous detoxification process along with the decolorization process.  相似文献   

4.
This paper discusses the possibility of immobilization of TiO2 nanoparticles onto recycled wool‐based nonwoven material, which can be utilized for removal of dyes from wastewater. The photocatalytic activity of TiO2 nanoparticles deposited on the nonwoven material was evaluated in the aqueous solution of direct dye C.I. Direct Blue 78 under the UV illumination. Nonwoven material modified with TiO2 nanoparticles provides complete removal of dye from the solution already after 4–6 h of UV illumination. However, photodegradation of the dye adsorbed on the nonwoven material was obtained within 24 h of UV illumination. The rate of dye adsorption and photodegradation depends on the amount of deposited TiO2 nanoparticles. The increase of initial dye concentration induced decrease in photocatalytic efficiency of immobilized TiO2 nanoparticles. The highest photodegradation rate was achieved in acidic conditions. Elevated temperatures positively affected the removal of dye from solution. Photocatalytic activity of TiO2 nanoparticles deposited on nonwoven material was preserved after three photodegradation cycles.  相似文献   

5.
This study illustrates the degradation of an azo dye, Reactive Yellow 81 (RY81), by the combined irradiation of UV‐C and ultrasound in the presence of homogeneous (Fe2+) and heterogeneous (TiO2, ZnO) catalysts. The efficiency of homogeneous and heterogeneous oxidation systems was evaluated in regard of the decolorization and mineralization of RY81. Decolorization followed pseudo‐first‐order kinetics with homogeneous and heterogeneous catalysts. Complete color removal was accomplished by homogeneous sonocatalytic and sonophotocatalytic oxidation processes with apparent rate constants of 0.96 × 10?3 and 46.77 × 10?3 s?1, respectively, in the presence of Fe2+. However, partial color removal was obtained by heterogeneous sonocatalytic, photocatalytic, and sonophotocatalytic oxidation processes with apparent rate constants of 2.32 × 10?3, 3.60 × 10?3, and 3.67 × 10?3 s?1, respectively, in the presence of ZnO. TiO2 had the worst catalytic effect of all of the oxidation processes. The addition of hydrogen peroxide increased the rate constants of the heterogeneous oxidation processes and decreased the rate constants of the homogeneous oxidation processes. RY81 mineralization was 62.8% for the US/UV/Fe2+ homogeneous oxidation process, which was the best oxidation process, whereas it was 43.5% for the US/UV/ZnO/H2O2 heterogeneous oxidation process within 2 h reaction time.  相似文献   

6.
Kaolin, cordierite, and calcite are investigated as supports for TiO2. The prepared TiO2/support samples are examined for the removal of organic dyes from wastewater. The samples are preliminarily investigated to identify the optimal loaded system using synthetic wastewater containing methylene blue (MB). Data indicate that the investigated support significantly affects the photocatalytic activity of the supported TiO2. Low photocatalytic activity toward MB degradation is observed upon using TiO2/calcite when compared to the unsupported TiO2. Interaction between calcite and titania species probably occurrs to produce the less photoactive CaTiO3 amorphous species. Anatase TiO2 is obtained upon using kaolin and cordierite as supports. The low photocatalytic performance of the TiO2/kaolin sample is also observed. A high concentration of MB on TiO2/kaolin surfaces blocks the photoactive sites. TiO2/cordierite shows the highest photocatalytic activity compared to the unsupported TiO2 as well as the other TiO2/support samples. Rigid cordierite particles suppress the agglomeration of TiO2 particles during the preparation, leading to a high exposed surface of TiO2 towards light illumination. TiO2/cordierite is investigated for the removal of organic dye from real wastewater collected from a textile dyeing factory. Color removal of up to 46% is achieved upon UV irradiation.  相似文献   

7.
In this study, the oxidative decolorization of C.I. reactive yellow 145 (RY 145) from synthetic textile wastewater including RY 145 and polyvinyl alcohol by Fenton and sono‐Fenton processes which are the combination of Fenton process with ultrasound has been carried out. The effects of some operating parameters which are the initial pH of the solution, the initial concentration of Fe2+, H2O2, and the dye, temperature, and agitation speed on the color and chemical oxygen demand (COD) removals have been investigated. The optimum conditions have been found as [Fe2+] = 20 mg/L, [H2O2] = 20 mg/L, pH 3 for Fenton process and [Fe2+] = 20 mg/L, [H2O2] = 15 mg/L, pH 3 for sono‐Fenton process by indirectly sonication at 35 kHz ultrasonic frequency and 80 W ultrasonic power. The color and COD removal efficiencies have been obtained as 91 and 47% by Fenton process, and 95 and 51% by sono‐Fenton processes, respectively. Kinetic studies have been performed for the decolorization of RY 145 under optimum conditions at room temperature. It has been determined that the decolorization has occurred rapidly by sono‐Fenton process, compared to Fenton process.  相似文献   

8.
This study investigated the effects of O3 and O3/H2O2/Fe2+ in the advanced oxidation processes (AOPs) on the biodegradable and soluble characteristics of semi‐aerobic stabilized solid waste leachate. The biodegradability (BOD5/chemical oxygen demand, COD) ratio improved from 0.034 to 0.05 and 0.1 following O3 and O3/H2O2/Fe2+, respectively. Fractions of biodegradable COD(bi) (24%), non‐biodegradable COD(ubi) (76%), soluble COD(s) (59%), biodegradable soluble COD(bsi) (38%), non‐biodegradable soluble COD(ubsi) (62%), and particulate COD (PCOD) (41%) in stabilized leachate were also investigated. The fraction of COD(bi) increased to 28 and 36% after applying O3 and O3/AOPs, respectively. COD(S) increased to 59% after O3 and to 72% after O3/AOPs, whereas COD(bsi) increased to 38 and 51% after O3 and O3/AOPs, respectively. The removal efficiency of COD(S) was obtained at 5% after O3 alone and improved to 51% following ozone‐based AOPs, whereas the removal efficiency of PCOD improved from 25% after O3 to 71% after ozone‐based AOPs.  相似文献   

9.
Catechol is one of the most abundant phenolic components of olive mill wastewaters. In this article, the mineralization of this compound in synthetic aqueous solutions by the Fenton and photo‐Fenton processes is studied. It has been found that for 1.44 mM catechol, the total organic carbon of solutions is reduced about 94.4% at best after 60 min of Fenton treatment at optimized conditions of pH 3.0, 0.2 mM Fe2+, 7.09 mM H2O2, and 25°C. A faster and overall mineralization is attained by applying photo‐Fenton with UVA irradiation. o‐Benzoquinone, 1,2,3‐trihydroxybenzene and 1,2,4‐trihydroxybenzene were identified by GC–MS as primary quinonic and polyhydroxylated derivatives. Small amounts of generated carboxylic acids like muconic, maleic, malonic, acetic, oxalic, and formic acids were detected by ion‐exclusion chromatography. The Fe(III) complexes of these acids persist in the medium under Fenton conditions, while their photolysis by UVA light and that of other by‐products account for by the faster degradation and total mineralization achieved in the photo‐Fenton process. A reaction sequence for catechol mineralization by Fenton and photo‐Fenton involving all intermediates detected is proposed.  相似文献   

10.
In the present study, effects of operational parameters on the electrical energy consumption for photooxidative process (UV/H2O2) for the decolorization of C. I. Acid Red 88 (AR88) have been investigated. In a series of experiments, 20 mg L?1 of AR88 solution were irradiated in the presence of different concentrations of H2O2 (to find out optimum amount of H2O2) by UV light intensity of 30 W m?2 for certain irradiation times. The decolorization of the dye followed pseudo first‐order kinetics, and hence, the figure‐of‐merit electrical energy per order (EEO) is appropriate for estimating the electrical energy efficiency. The electrical energy consumption was determined during the variation of some parameters such as initial H2O2 concentration, initial dye concentration, UV light intensity, pH, and the gap size of solution. Results showed that electrical energy could be reduced by optimizing operational parameters.  相似文献   

11.
The UV/H2O2 is one of the popular techniques in the advanced oxidation processes (AOPs) and has been applied in the wastewater treatment during recent two decades. UV exposure on the H2O2 generate highly reactive hydroxyl radicals (OH?), which are used to degrade organic contaminants through oxidation processes in wastewater. This present study involves the estimation of hydroxyl radical rate constants of methyldiethanolamine (MDEA) mineralization at different temperatures by using UV/H2O2 in aqueous solution. Laboratory experiments have been conducted and the profile of MDEA mineralization has been established. The hydroxyl radical rate constants and the activation energy of mineralization process have been calculated. The estimated hydroxyl rate constants and the activation energy are in good agreement with those reported in the literature.  相似文献   

12.
The relative ability of Coriolus versicolor to grow on coir fiber as a ligninocellulosic material was examined. Addition of yeast extract to the culture increased laccase activity, which was further enhanced to the level of 1976 U/L by addition of 1 mM copper sulfate. Laccase thus produced was used without further purification for the decolorization of various dye solutions. Decolorization efficiency was compared with the conventional environment friendly oxidation technique using hydrogen peroxide in the presence of UV radiations. Laccase showed good decolorization in most of the cases. Excellent results were achieved when the dye solution was treated successively with laccase and UV/H2O2 wherein more than 80% decolorization was achieved. This value is remarkably higher than that attained either by the enzyme or UV/H2O2 photolysis alone.  相似文献   

13.
This research aims at optimizing the effects of processing conditions, salts, natural organic materials, and water matrices quality on the effectiveness of the Fe(II)/K2S2O8/hydroxylamine process in the degradation of pararosaniline. Assisting the Fe(II)/KPS (potassium persulfate) treatment with protonated hydroxylamine (H3NOH+) increases the degradation rate of pararosaniline by more than 100%. Radical scavenger experiments show that the SO4●− radical dominates pararosaniline degradation in the Fe(II)/KPS system, whereas OH is the dominant reactive species in the presence of H3NOH+. The disparity in pararosaniline removal effectiveness upon the Fe(II)/KPS/H3NOH+ and Fe(II)/KPS systems gets more significant with increasing reactants doses (i.e., H3NOH+, H2O2, Fe(II)) and solution pH (2–7). Interestingly, H3NOH+ increased the working pH to 6 instead of pH 4 for the Fe(II)/KPS process. Moreover, mineral anions such as Cl, NO3, NO2, and SO4 (up to 10 × 10−3 m ) do not affect the efficiency of the Fe(II)/KPS/H3NOH+ process. In contrast, acid humic decreases the performance of the process by ≈20%. In natural mineral water, treated wastewater, and river water samples, the Fe(II)/KPS/H3NOH+ process maintains higher degradation performance (≈95%), whereas the process efficiency is greatly amortized in seawater. The efficiency of the Fe(II)/KPS process was drastically decreased in the various water matrices.  相似文献   

14.
Purification of Wastewaters Containing Azo Dyes This study describes the degradability of the azo dye C.I. Reactive Violet 5 by a continuous flow biological treatment system consisting of three rotating disc reactors. The azo dye was first decolorized in an anaerobic reactor. Decolorization was improved by adding an auxiliary substrate (yeast extract and acetic acid). Although severe operating conditions were experienced due to failures in the temperature and pH-controllers, the reactor recovered quickly and continued to decolorize reliably. The removal of the auxiliary substrate in the anaerobic reactor was not satisfactory, probably due to the copper in the azo dye. Batch experiments showed that copper was removed from the dye molecule and precipitated during the decolorization. In the continuous flow reactor, the copper precipitate on the disc can redissolve due to a pH-gradient in the fixed biomass becoming toxic again for the bacteria. In the following two aerobic reactors, the auxiliary substrate was degraded, but mineralization of the dye metabolites was insufficient. The aromatic amines produced by the anaerobic decolorization are more toxic in the bacterial luminescence test than the azo dye. Therefore, decolorization alone cannot be used to treat colored wastewater. Since the amines can also be produced in anaerobic parts of rivers, the dyes have to be removed in a more efficient way. That is the reason why in further experiments ozonation is being tested to increase the biological degradability of the azo dye for a following aerobic stage. Either ozonation can be used after the two stage treatment of the dye in anaerobic/aerobic reactors or the dye can be oxidized directly, making the addition of auxiliary substrate unnecessary. These configurations are being tested with the goal to degrade the dye with the least ozone consumption.  相似文献   

15.
This study examined the UV/H2O2 decolorization efficiency under high UV photon flux (intensity normalized by photon energy) irradiation; the incident UV was ranging from 3.13 × 10?8 to 3.13 × 10?6 einstein cm?2 s?1. The experimental results showed that complete decolorization of 20 mg L?1 methylene blue (MB) can be achieved within 5 s and 99% decolorization of 1000 mg L?1 MB can be achieved in 180 s under the best condition of high UV intensity UV/H2O2 process. To the best of our knowledge, UV/H2O2 decolorization process in such a short time has not been reported. The electrical energy per order of the process was 16.21 kWh m?3 order?1 and it is relatively economical compared with other advanced oxidation processes. The kinetics of decolorization follows pseudo‐first order. There is a linear relationship between rate constant and UV intensity, which indicates that increasing UV intensity does not cause decline in light utilization efficiency. The experiment related to initial substrate concentration shows decolorization rate of different substrate concentration (20–1000 mg L?1) are closed to each other. Besides, optimal H2O2 concentration, comparative study with low photon flux light, decolorization of other types of dyes and TOC removal were also studied.  相似文献   

16.
Fenton process was investigated for the purpose of biological sludge disintegration. The Box–Wilson experimental design was employed to evaluate the effects of major process variables (Fe(II) and H2O2 concentrations) on both disintegration and dewatering performance of sludge. Results showed that 4 g Fe(II)/kg total solids (TSs) and 60 g H2O2/kg TS are efficient for floc disintegration. Fenton pre‐treatment enhanced the biodegradability of sludge. For 4 g Fe(II)/kg TS and 60 g H2O2/kg TS, 19.4% higher methane production was achieved compared to raw sludge in biochemical methane potential assay. Fenton pre‐treatment resulted in the release of organic sludge components into the liquid phase. For 4 g Fe(II)/kg TS and 60 g H2O2/kg TS, dissolved organic carbon and total nitrogen in sludge's supernatant increased by 75.74 and 60.60%, respectively. Fenton pre‐treatment enhanced the filterability of sludge and it can be applied for conditioning purpose before mechanical dewatering units.  相似文献   

17.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   

18.
Han-Lin  Chen  Zi-Long  Li  Shu-Feng  Yang  Chuan-Wan  Dong  Wen-Jiao  Xiao  Yoshiaki  Tainosho 《Island Arc》2006,15(1):210-222
Abstract A mafic granulite body was newly discovered in the Altay Orogenic Belt, northwest China. The rocks comprise a suite of coarse‐grained and fine‐grained granulites. Orthopyroxenes (hypersthenes) in the rocks have high XMg and low Al2O3 contents, whereas clinopyroxenes have low TiO2 and Al2O3 contents. Amphiboles and biotites have a high Mg/(Mg + Fe2+) ratio and low contents of F and Cl. The peak metamorphic pressure–temperature (P–T) conditions are estimated as 750–780°C and 6–7 kbar, and retrograde P–T conditions are in the range of 590–620°C and 2.3–3.7 kbar, indicating significant decompression. Metamorphic reactions and P–T estimates define a clockwise P–T path. Geochemically, the rocks are high in Mg/(Mg + Fe) and Al2O3, depleted in U, Th, K and Rb, and characterized by light rare earth element enrichment and a weak positive Eu anomaly. The Altay mafic granulite shows depleted Nb, P and Ti contents in the mid‐oceanic ridge basalt normalized spider diagram. The geochemical characteristics suggest that the protolith of the Altay mafic granulite was calc‐alkaline basalt and andesite with an island‐arc affinity. The rock has a high 143Nd/144Nd ratio with ?Nd(0) > 0, indicating derivation from a mantle‐depleted source. In the present study, a two‐stage model for the evolution of the Altay mafic granulite is proposed: an early stage in which calc‐alkaline basalt and andesite with island‐arc affinity were subducted into a deeper level of the crust and subjected to granulite‐facies metamorphism generating the mafic granulite, followed by the later stage exhumation of the system into the upper crust by the late Paleozoic thrusting.  相似文献   

19.
20.
Inclusions consisting of clinopyroxene, amphibole, Fe-Ti oxides and apatitc are abundant in the Roque Nublo volcanics, a unit of Late Tertiary age that is widespread on Gran Canaria Island. The unit includes alkalic basalts and breccias. Mafic minerals in several inclusions and in one basalt host have been analysed with the electron microprobe. Although the inclusions vary in size, texture and mineralogy, they show certain common teatures. The pyroxenes analyzed are all salites-augites and their position in the Ca-Fe Mg quadrilateral suggests that they are early formed representatives of the pyroxene crystallization trend characteristic of alkaliolivine basalt. The amphibole is invariably kaersutite. A common variety of inclusion is composed largely of kaersutite and titaniferous clinopyroxene. The kaersutite (TiO2 5.27%, K2O 1.58%) is homogeneous, except for slight iron enrichment in the margins of crystals. The clinopyroxene is an hourglass-zoned, brownish titansalite, Ca 50 Mg 35 Fe 15, TiO2 3.08%, with a green core of Ca 49 Mg 38 Fe 13, TiO2 2.15%. Compositions of coexisting titanilerous magnetite and ilmenite, Usp 44 Mt 56 and Ilm 85 Hem 15, respectively, indicate they formed at approximately 975°C and pO, 10?10.5 atm. In another type of inclusion and its host basalt, pyroxene relations are more complex. Inclusion pyroxene is markedly but diffusely zoned. Predominant is a green salite, Ca 47 Mg 38 Fe 15, TiO2 1.11%, which has small, patchy core zones of brownish. Ti-rich salite. Ca 48 Mg 35 Fe 17, TiO2 1.94%. Cores of crystals in the host basalt are Ca 47 Mg 41 Fe 12, TiO2 2.23%; rims are pale green, Cr-rich diopsidic augite, Ca 44 Mg 45 Fe 11, TiO2 1.32%, Cr2O3 0.48%. This «reverse» Fe-Mg zoning is attributed to increasing partial pressure of oxygen as crystallization proceeded. Kaersutite similar to that mentioned above occurs in both the inclusion and its host, in which it is highly resorbed. The available field and analytical evidence strongly suggests that the inclusions and the associated basalts are genetically related. Resorption of the kaersutite at depth may have given rise to the alkalic basalts of the Roque Nublo series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号