首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the seismic response assessment of an old reinforced concrete viaduct and the effectiveness of friction‐based retrofitting systems. Emphasis was laid on an old bridge, not properly designed to resist seismic action, consisting of 12 portal piers that support a 13‐span bay deck for each independent roadway. On the basis of an OpenSEES finite element frame pier model, calibrated in a previous experimental campaign with cyclic displacement on three 1:4 scale frame piers, a more complex experimental activity using hybrid simulation has been devised. The aim of the simulation was twofold: (i) to increase knowledge of non‐linear behavior of reinforced concrete frame piers with plain steel rebars and detailing dating from the late 1950s; and (ii) to study the effectiveness of sliding bearings for seismic response mitigation. Hence, to explore the performance of the as built bridge layout and also of the viaduct retrofitted with friction‐based devices, at both serviceability and ultimate limit state conditions, hybrid simulation tests were carried out. In particular, two frame piers were experimentally controlled with eight‐actuator channels in the as built case while two frame piers and eight sliding bearings were controlled with 18‐actuator channels in the isolated case. The remaining frame piers were part of numerical substructures and were updated offline to accurately track damage evolution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper aims at clarifying the role of dynamic soil–structure interaction in the seismic assessment of structure and foundation, when the non‐linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non‐linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro‐element modeling of the soil–foundation system. The results of the dynamic simulations point out the beneficial effects of the non‐linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed‐base or linear‐elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non‐linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The capability of a simplified approach to model the behaviour of shallow foundations during earthquakes is explored by numerical simulation of a series of shaking table tests performed at the Public Works Research Institute, Tsukuba, Japan. After a summary of the experimental work, the numerical model is introduced, where the whole soil–foundation system is represented by a multi‐degrees‐of‐freedom elasto‐plastic macro‐element, supporting a single degree‐of‐freedom superstructure. In spite of its simplicity and of the large intensity of the excitation involving a high degree of nonlinearity in the foundation response, the proposed approach is found to provide very satisfactory results in predicting the rocking behaviour of the system and the seismic actions transmitted to the superstructure. The agreement is further improved by introducing a simple degradation rule of the foundation stiffness parameters, suitable to capture even some minor details of the observed rocking response. On the other hand, the performance of the model is not fully satisfactory in predicting vertical settlements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
An investigation is presented of the collapse of a 630 m segment (Fukae section) of the elevated Hanshin Expressway during the 1995 Kobe earthquake. The earthquake has, from a geotechnical viewpoint, been associated with extensive liquefactions, lateral soil spreading, and damage to waterfront structures. Evidence is presented that soil–structure interaction (SSI) in non‐liquefied ground played a detrimental role in the seismic performance of this major structure. The bridge consisted of single circular concrete piers monolithically connected to a concrete deck, founded on groups of 17 piles in layers of loose to dense sands and moderate to stiff clays. There were 18 spans in total, all of which suffered a spectacular pier failure and transverse overturning. Several factors associated with poor structural design have already been identified. The scope of this work is to extend the previous studies by investigating the role of soil in the collapse. The following issues are examined: (1) seismological and geotechnical information pertaining to the site; (2) free‐field soil response; (3) response of foundation‐superstructure system; (4) evaluation of results against earlier studies that did not consider SSI. Results indicate that the role of soil in the collapse was multiple: First, it modified the bedrock motion so that the frequency content of the resulting surface motion became disadvantageous for the particular structure. Second, the compliance of soil and foundation altered the vibrational characteristics of the bridge and moved it to a region of stronger response. Third, the compliance of the foundation increased the participation of the fundamental mode of the structure, inducing stronger response. It is shown that the increase in inelastic seismic demand in the piers may have exceeded 100% in comparison with piers fixed at the base. These conclusions contradict a widespread view of an always‐beneficial role of seismic SSI. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, different formulations of a macro‐element model for non‐linear dynamic soil‐structure interaction analyses of structures lying on shallow foundations are first reviewed, and secondly, a novel formulation is introduced, which combines some of the characteristics of previous approaches with several additional features. This macro‐element allows one to model soil‐footing geometric (uplift) and material (soil plasticity) non‐linearities that are coupled through a stiffness degradation model. Footing uplift is introduced by a simple non‐linear elastic model based on the concept of effective foundation width, whereas soil plasticity is treated by means of a bounding surface approach in which a vertical load mapping rule is implemented. This mapping is particularly suited for the seismic loading case for which the proposed model has been conceived. The new macro‐element is subsequently validated using cyclic and dynamic large‐scale laboratory tests of shallow foundations on dense sand, namely: the TRISEE cyclic tests, the Public Works Research Institute and CAMUS IV shaking table tests. Based on this comprehensive validation process against a set of independent experimental results, a unique set of macro‐element parameters for shallow foundations on dense sand is proposed, which can be used to perform predictive analyses by means of the present model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Real‐time substructure testing is a novel method of testing structures under dynamic loading. The complete structure is separated into two substructures, one of which is tested physically at large scale and in real time, so that time‐dependent non‐linear behaviour of the substructure is realistically represented. The second substructure represents the surrounding structure, which is modelled numerically. In the current formulation this numerical substructure is assumed to remain linear. The two substructures interact in real‐time so that the response of the complete structure, incorporating the non‐linear behaviour of the physical substructure, is accurately represented. This paper presents several improvements to the linear numerical modelling of substructures for use in explicit time‐stepping routines for real‐time substructure testing. An extrapolation of a first‐order‐hold discretization is used which increases the accuracy of the numerical model over more direct explicit methods. Additionally, an integral form of the equation of motion is used in order to reduce the effects of noise and to take into account variations of the input over a time‐step. In order to take advantage of this integral form, interpolation of the model output is performed in order to smooth the output. The improvements are demonstrated using a series of substructure tests on a simple portal frame. While the testing approach is suitable for cases in which the physical substructure behaves non‐linearly, the results presented here are for fully linear systems. This enables comparisons to be made with analytical solutions, as well as with the results of tests based on the central difference method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
This paper includes an investigation of the influence of the soil–structure interaction (SSI) on the fundamental period of buildings. The behaviour of both the soil and the structure is assumed to be elastic. The soil‐foundation system is modelled using translational and rotational discrete springs. Analysis is first conducted for one‐storey buildings. It shows that the influence of the SSI on the fundamental frequency of building depends on the soil–structure relative rigidity Kss. Analysis is then extended for multi‐storey buildings. It allows the generalization of the soil–structure relative rigidity Ks to such complex structures. Charts are proposed for taking into account the influence of the SSI in the calculation of the fundamental frequency of a wide range of buildings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

11.
The biaxial response of two bridge piers is experimentally investigated. A post‐tensioned precast bridge pier with external replaceable mild‐steel dissipaters is tested under biaxial loading. The performance of the post‐tensioned bridge pier is compared with a conventionally reinforced monolithic bridge pier. The experimental biaxial response is then compared with previous uniaxial experimental testing of identical bridge piers to understand the influence of biaxial loading, specifically concerning post‐tensioned rocking sections. A 3‐dimensional moment–curvature and moment–rotation analysis program is created to generate the monotonic section response of a conventional and post‐tensioned bridge pier. After comparing the accuracy of the section analysis program to the experimental testing of the monolithic pier, the program is validated against the experimental testing of the post‐tensioned bridge pier. This section analysis program is then used in the calibration of a macro‐model to capture the entire cyclic response of the post‐tensioned bridge pier. The macro‐model adopts multiple linear‐elastic compression‐only springs at the rocking interface, combined with non‐linear inelastic springs for each of the mild‐steel dissipaters and returns encouraging results at both local and global levels. The paper concludes with a number of biaxial moment‐interaction design charts for monolithic and post‐tensioned bridge piers as a function of mechanical and geometric section properties. The design charts define the biaxial yield surface at nominal yield and at the design section capacity defined by one of three material limit states. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new direct modeling approach to analyze 3D dynamic SSI systems including building structures resting on shallow spread foundations. The direct method consists of modeling the superstructure and the underlying soil domain. Using a reduced shear modulus and an increased damping ratio resulted from an equivalent linear free-field analysis is a traditional approach for simulating behavior of the soil medium. However, this method is not accurate enough in the vicinity of foundation, or the near-field domain, where the soil experiences large strains and the behavior is highly nonlinear. This research proposes new modulus degradation and damping augmentation curves for using in the near-field zone in order to obtain more accurate results with the equivalent linear method. The mentioned values are presented as functions of dimensionless parameters controlling nonlinear behavior in the near-field zone. This paper summarizes the semi-analytical methodology of the proposed modified equivalent linear procedure. The numerical implementation and examples are given in a companion paper.  相似文献   

13.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

14.
The effects of soil‐structure interaction (SSI) are often studied using two‐dimensional (2D) or axisymmetric three‐dimensional (3D) models to avoid the high cost of the more realistic, fully 3D models, which require 2 to 3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed using impedances for linear in‐plane 2D models with rectangular foundations, embedded in uniform or layered half‐space. They are computed by comparison with results for 3D rectangular foundations with the same vertical cross‐section and different aspect ratios. The structure is represented by a single degree‐of‐freedom oscillator. Correction factors are presented for a range of the model parameters. The results show that in‐plane 2D approximations overestimate the SSI effects, exaggerating the frequency shift, the radiation damping, and the reduction of the peak amplitude. The errors are larger for stiffer, taller, and heavier structures, deeper foundations, and deeper soil layer. For example, for a stiff structure like Millikan library (NS response; length‐to‐width ratio ≈ 1), the error is 6.5% in system frequency, 44% in system damping, and 140% in peak amplitude. The antiplane 2D approximation has an opposite effect on system frequency and the same effect on system damping and peak relative response. Linear response analysis of a case study shows that the NEHRP‐2015 provisions for reduction of base shear force due to SSI may be unsafe for some structures. The presented correction factor diagrams can be used in practical design and other applications.  相似文献   

15.
This paper presents the results of an experimental investigation carried out to investigate the seismic performance of a two storey brick masonry house with one room in each floor. A half‐scale building constructed using single wythe clay brick masonry laid in cement sand mortar and a conventional timber floor and timber roof clad with clay tiles was tested under earthquake ground motions on a shaking table, first in the longitudinal direction and then in the transverse direction. In each direction, the building was subjected to different ground motions with gradually increasing intensity. Dynamic properties of the system were assessed through white‐noise tests after each ground motion. The building suffered increasing levels of damage as the excitations became more severe. The damage ranged from cracking to global/local rocking of different piers and partial out‐of‐plane failure of the walls. Nevertheless, the building did not collapse under base excitations with peak ground acceleration up to 0.8g. General behaviour of the tested building model during the tests is discussed, and fragility curves are developed for unreinforced masonry buildings based on the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The seismic performance of the Bolu Viaduct in the Duzce, Turkey, earthquake of November 1999 was studied via a non‐linear, time‐history analysis of a multi‐degree of freedom model. The viaduct had a seismic isolation system consisting of yielding‐steel energy dissipation units and sliding pot bearings. The Duzce earthquake caused a surface rupture across the viaduct, which resulted in excessive superstructure movement and widespread failure of the seismic isolation system. The effect of the rupture was modeled by a static, differential ground displacement in the fault‐parallel direction across the rupture. The ground motions used in the analysis contain common near‐fault features including a directivity pulse in the fault‐normal direction and a fling step in the fault‐parallel direction. The analysis used a finite element package capable of modeling the mechanical behavior of the seismic isolation system and focused on the structural response of a 10‐span module of the viaduct. This analysis showed that the displacement of the superstructure relative to the piers exceeded the capacity of the bearings at an early stage of the earthquake, causing damage to the bearings as well as to the energy dissipation units. The analysis also indicated that shear keys, both longitudinal and transverse, played a critical role in preventing collapse of the deck spans. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

17.
The authors propose a new analysis method, called the macro–micro analysis method (MMAM) in a companion paper. (Earthquake Engng. Struct. Dyn., this issue) for strong motion prediction with higher resolution and accuracy. The MMAM takes advantage of the bounding medium theory to obtain optimistic and pessimistic estimates of the expected strong motion and the singular perturbation expansion that leads to an efficient multi‐scale analysis. The results of the numerical simulation with the MMAM are given as the sum of waves of low resolution covering the whole city and waves of high resolution for each part of the city. While the huge computation amount is reduced by the MMAM, the computation amount is huge still. For resolving this problem, this paper applies the finite element method with voxel element to numerical simulation tools after some numerical verification. To reproduce complicated material properties of surface soft deposits, fundamental hysteresis attenuation is implemented in the three‐dimensional simulation code. The proposed method is verified by carrying out the strong motion prediction with MMAM and comparing with measured data. In addition, the effect of three‐dimensional soil–structure and frequency component on the maximum velocity distribution, which is simulated by proposed method with high spatial resolution, is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Distributed plasticity beam elements are commonly used to evaluate limit state demands for performance‐based analysis of reinforced concrete (RC) structures. Strain limits are often preferred to drift limits because they directly relate to damage and are therefore less dependent on member geometry and boundary conditions. However, predicting accurately strain demands still represents a major simulation challenge. Tension shift effects, which induce a linear curvature profile in the plastic hinge region of RC columns and walls, are one of the main causes for the mismatch between experimental and numerical estimates of local level quantities obtained through force‐based formulations. Classical displacement‐based approaches are instead suitable to simulate such linear curvature profile. Unfortunately, they verify equilibrium only on an average sense due to the wrong assumption on the axial displacement field, leading to poor deformation and force predictions. This paper presents a displacement‐based element in which axial equilibrium is strictly verified along the element length. The assumed transversal displacement field ensures a linear curvature profile, connecting accurately global displacement and local strain demands. The proposed finite element is validated against two sets of quasi‐static cyclic tests on RC bridge piers and walls. The results show that curvature and strain profiles for increasing ductility demands are significantly improved when axially equilibrated rather than classical displacement‐based or force‐based elements are used to model the structural members. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The paper presents a lumped parameter model for the approximation of the frequency‐dependent dynamic stiffness of pile group foundations. The model can be implemented in commercial software to perform linear or nonlinear dynamic analyses of structures founded on piles taking into account the frequency‐dependent coupled roto‐translational, vertical, and torsional behaviour of the soil‐foundation system. Closed‐form formulas for estimating parameters of the model are proposed with reference to pile groups embedded in homogeneous soil deposits. These are calibrated with a nonlinear least square procedure, based on data provided by an extensive non‐dimensional parametric analysis performed with a model previously developed by the authors. Pile groups with square layout and different number of piles embedded in soft and stiff soils are considered. Formulas are overall well capable to reproduce parameters of the proposed lumped system that can be straightforwardly incorporated into inertial structural analyses to account for the dynamic behaviour of the soil‐foundation system. Some applications on typical bridge piers are finally presented to show examples of practical use of the proposed model. Results demonstrate the capability of the proposed lumped system as well as the formulas efficiency in approximating impedances of pile groups and the relevant effect on the response of the superstructure.  相似文献   

20.
The first part of this paper presents an extensive validation of four analytical solutions for the seismic design of circular tunnels. The validation is performed with a quasi-static finite element (FE) model which conforms to the assumptions of the analytical solutions. Analyses are performed for a wide range of flexibility ratios, slippage conditions at soil–lining interface, assuming both drained and undrained behaviour. Based on the numerical predictions the relative merits of the considered analytical solutions are discussed and recommendations are given for their use in design. The second part of this paper explores the use of equivalent linear soil properties in analytical solutions as an approximate way of simulating nonlinearity. The results of equivalent linear site response analyses are used as an input for the analytical solutions. The comparison of the analytical predictions with nonlinear numerical analysis results is very satisfactory. The results of this study suggest that analytical solutions can be used for preliminary design using equivalent linear properties and the corresponding compatible strain as an approximate way of accounting for nonlinear soil response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号