首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fish Canyon Tuff is one of the largest currently recognizedash-flow tuffs (> 3000 km3). It is a crystal-rich quartzlatite containing about 40 per cent phenocrysts of plagioclase,sanidine, biotite, hornblende, quartz, magnetite, sphene, andilmenite. Pyrrhotite occurs as inclusions in magnetite, sphene,and hornblende. The consistency of mineralogy and whole rockchemistry confirms that the Fish Canyon tuff is remarkably homogeneous.Most chemical variations can be accounted for by phenocryst-matrixfractionation, probably due to glass winnowing during eruptionand emplacement. The composition of the parent magma, correctedfor such winnowing, is very similar to that of calc-alkalinebatholiths such as the Boulder and the Sierra Nevada batholiths. Fe-Ti oxide geothermometers indicate temperatures of 800 ? 30?C for most of the outflow tuff. No evidence for a regular thermalgradient in the magma chamber could be detected. Two feldsparand Fe-Ti oxide equilibria indicate that the magma developedat depths of 25 to 30 km (about 9 kb pressure), and was eruptedwithout time for phenocryst re-equilibration. The reconstructedcomposition of the liquid in equilibrium with the phenocrystsalso suggests a deep source for this ash flow. A late, upperpackage of flow units have mineralogical characteristics whichmay reflect partial re-equilibration in a shallower environment. Oxygen fugacities are moderately high (log fO2 = — 11.5?0.3) but are similar to those obtained from other continentalcalc-alkaline ash-flow tuffs. The water fugacity is limitedby calculations using biotite equilibria and experimental workrelating to the stability of the phenocryst assemblage. Bestestimates are that water fugacity was 2000 ? 1000 bars. Theactivities of sulphurous gases are estimated at fSO2 = 2 to4 bars, fso2 = 150 to 200 bars, fH2S = 70 to 80 bars. The Fish Canyon Tuff therefore came from a deep, homogeneous,granitic magma body of batholithic proportions. Calculationsof its probable viscosity, density, and size indicate that thesystem should convect with any reasonable thermal gradient.Convective mixing may account for the homogeneity of the parentmagma body.  相似文献   

2.
The Late Permian Fe-Ti oxide ore-bearing Baima igneous complex (BIC) is one of three gabbro-granitoid complexes with the Emeishan large igneous province. Mineral compositions are determined for the BIC layered gabbro in order to constrain subsolidus and magma chamber processes. The averaged compositions of cumulus olivine, clinopyroxene and plagioclase within individual samples range from Fo65-76, Mg# = 75 to 82 and An49-64 but they are not correlative. The observed mineral compositions are consistent with those modeled using the pHMELTS program. Highly variable magnetite compositions are consistent with extensive subsolidus re-equilibration and exsolution. The occurrence of reversely-zoned granular olivine in Fe-Ti oxide ores is a manifestation of Mg transfer between Fe-Ti oxides and olivine at relatively high (<1150?°C) subsolidus temperatures. The primary oxide is inferred to be an aluminous titanomagnetite. Similar to other layered intrusions in the region, the gabbroic unit of the BIC displays Zr depletion which is consistent with loss of a residual liquid during magma differentiation. If the most Zr-rich syenites of the complex are taken into account, the Zr budgets between the combined gabbro-syenite and the basalts are similar. This indicates that the BIC most likely represents a closed system in terms of magma extraction.  相似文献   

3.
东天山香山铜镍-钛铁成矿与两类岩浆演化关系探讨   总被引:1,自引:0,他引:1  
香山矿床是东天山唯一一个铜镍矿体与钛铁矿体共存的复合型矿床,目前普遍被认为是同源岩浆高度演化的产物。但为何区内众多同时代镁铁-超镁铁质岩体中只有香山岩体产出有大型钛铁矿床?这一问题仍有待进一步探讨。本文通过系统对比香山与其相邻的黄山东、黄山和黄山南等典型铜镍矿的地球化学特征、母岩浆性质及岩浆演化过程,认为香山岩体母岩浆相对其相邻典型铜镍矿床并不富集Fe和Ti,且其母岩浆早期演化过程及分异演化程度相似。模拟计算表明:岩浆体系早期都处于较还原的环境(f_(O_2)QFM+1),而且都发生了大量橄榄石、斜方辉石和单斜辉石的分离结晶和硫化物的熔离,由此消耗了岩浆体系中大量的Fe,导致残余岩浆中Fe含量降低;另外在岩浆演化的各阶段,尤其到岩浆演化后期,大量角闪石的结晶进一步降低了残余岩浆中的Fe和Ti的含量,不能造成Fe和Ti的逐渐富集,据此我们认为同源岩浆演化不具备形成钛铁矿床的物质基础。通过初步对比东天山地区典型铜镍矿床和钛铁矿床与该地区早二叠世两类玄武岩的地球化学特征及演化趋势,我们初步推测东天山地区铜镍成矿与钛铁成矿是两类不同性质岩浆独立演化的产物,铜镍成矿可能与拉斑玄武质岩浆演化密切相关,而钛铁矿则可能与碱性玄武岩演化密切相关。  相似文献   

4.
The Taihe intrusion is one of the layered intrusions situated in the central zone of the Emeishan Large Igneous Province (ELIP), SW China. The cyclic units in the Middle Zone of the intrusion are composed of apatite-magnetite clinopyroxenite at the base and gabbro at the top. The apatite-rich oxide ores contain 6–12 modal% apatite and 20–50 modal% Fe-Ti oxides evidently distinguished from the coeval intrusions in which apatite-rich rocks are poor in Fe-Ti oxides. Most of apatites of the Taihe Middle and Upper Zones are fluorapatite, although four samples show slightly high Cl content in apatite suggesting that they crystallize from a hydrous parental magma. Compared to the apatite from the gabbro of the Panzhihua intrusion, situated 100 km to the south of the Taihe intrusion, the apatite of the Taihe rocks is richer in Sr and depleted in HREE relative to LREE. The calculated magma in equilibrium with apatite of the Taihe Middle and Upper Zones also shows weakly negative Sr anomalies in primitive mantle normalized trace element diagrams. These features indicate that the apatite of the Taihe Middle and Upper Zones crystallizes after clinopyroxene and before plagioclase. The apatite of the Taihe Middle and Upper Zones shows weakly negative Eu anomalies suggesting a high oxygen fugacity condition. The high iron and titanium contents in the oxidizing magma result in crystallization of Fe-Ti oxides. Crystallization of abundant Fe-Ti oxides and clinopyroxenes lowers the solubility of phosphorus and elevates SiO2 concentration in the magma triggering the saturation of apatite. The positive correlations of Sr, V, total REE contents and Ce/Yb ratio in apatite with cumulus clinopyroxene demonstrate approximately compositional equilibrium between these phases suggesting they crystallized from the same ferrobasaltic magma. Early crystallization and accumulation of Fe-Ti oxide together with apatite produced the apatite-rich oxide ores at the base of the cyclic units of the Taihe Middle Zone.  相似文献   

5.
The Hongge magmatic Fe-Ti-V oxide deposit in the Panxi region, SW China, is hosted in a layered mafic–ultramafic intrusion. This 2.7-km-thick, lopolith-like intrusion consists of the lower, middle, and upper zones, which are composed of olivine clinopyroxenite, clinopyroxenite, and gabbro, respectively. Abundant Fe-Ti oxide layers mainly occur in the middle zone and the lower part of the upper zone. Fe-Ti oxides include Cr-rich and Cr-poor titanomagnetite and granular ilmenite. Cr-rich titanomagnetite is commonly disseminated in the olivine clinopyroxenite of the lower parts of the lower and middle zones and contains 1.89 to 14.9 wt% Cr2O3 and 3.20 to 16.2 wt% TiO2, whereas Cr-poor titanomagnetite typically occurs as net-textured and massive ores in the upper middle and upper zones and contains much lower Cr2O3 (<0.4 wt%) but more variable TiO2 (0.11 to 18.2 wt%). Disseminated Cr-rich titanomagnetite in the ultramafic rocks is commonly enclosed in either olivine or clinopyroxene, whereas Cr-poor titanomangetite of the net-textured and massive ores is mainly interstitial to clinopyroxene and plagioclase. The lithology of the Hongge intrusion is consistent with multiple injections of magmas, the lower zone being derived from a single pulse of less differentiated ferrobasaltic magma and the middle and upper zones from multiple pulses of more differentiated magmas. Cr-rich titanomagnetite in the disseminated ores of the lower and middle zones is interpreted to represent an early crystallization phase whereas clusters of Cr-poor titanomagnetite, granular ilmenite, and apatite in the net-textured ores of the middle and upper zones are thought to have formed from an Fe-Ti-(P)-rich melt segregated from a differentiated ferrobasaltic magma as a result of liquid immiscibility. The dense Fe-Ti-(P)-rich melt percolated downward through the underlying silicate crystal mush to form net-textured and massive Fe-Ti oxide ores, whereas the coexisting Si-rich melt formed the overlying plagioclase-rich rocks in the intrusion.  相似文献   

6.
The late Pleistocene Calabozos ash-flow and caldera complexlies in central Chile in a section of the Andean cordillerathat is transitional between dominantly andesitic-to-rhyoliticvolcanism to the north and mafic andesitic and high-aluminabasaltic volcanism to the south. The Calabozos rocks range incomposition from basaltic andesite to rhyodacite and definea high-K calcalkalic suite. They contain 2–25% phenocrystsof plagioclase, clinopyroxene, orthopyroxene, Fe-Ti oxides,and apatite, ? minor biotite or amphibole. More than 1000km3 of rhyodacitic to dacitic magma erupted atthe Calabozos caldera complex as three major compositionallyzoned ash-flow sheets, Unit L (0?8 Ma), Unit V (0? 30Ma), andUnit S (0?15 Ma) of the Loma Seca Tuff. Phenocryst modes, trace-elementcontents, inferred magmatic volatile contents, and oxygen fugacitiesvary systematically with major-element composition in the tuffs.In the cases of Units V and S, it is possible to reconstructcompositional, thermal, and volatile gradients that existedin density-stratified magma chambers shortly prior to theireruption. The magma graded from crystal-poor, water-rich, andbiotite-bearing rhyodacite in the upper reaches of the chamberto more crystal-rich, water-poor, and amphibole-bearing daciteat deeper levels. Fe-Ti oxide equilibration temperatures are800 to 900?C for rhyodacite and 900 to 950?C for dacite. Magmathat erupted as Unit S was slightly hotter and more oxidizedthan magma that gave rise to Unit V. More mafic magmas wereassociated with the voluminous rhyodacitic to dacitic magmareservoir, as indicated by the presence of andesite and basalticandesite lava flows and by scoria inclusions in Unit V. The compositional suite from basaltic andesite to rhyodacitecan be simulated satisfactorily by crystal-fractionation calculationsbased on major-element phenocryst and rock compositions, andis consistent with modes of the Calabozos rocks. Rhyodacitesof Units V and S, however, are enriched in elements such asRb, Ba, and Zr relative to trace-element contents predictedby crystal-fractionation models. The enrichment can be achievedby assimilation of wall rock or a partial melt of the wall rock.The latter requires that the ratio of assimilation rates tocrystallization rates be between 0?1 and 0?3. Rates of assimilationversus crystallization were greater for Unit S than for UnitV, which is consistent with the lower Fe-Ti oxide temperaturesand less oxidized state of the latter. The Loma Seca Tuff is similar in bulk composition to sanidine-bearingash-flow sheets erupted on ‘mature’ continentalcrust, but it is mineralogically akin to ash-flow tuffs eruptedon ‘immature’ crust. The difference is attributed,in part, to the effect of the density of the crust on the rateof magma ascent at shallow levels. The ascent of large bodiesof silicic magma is slower in silicic (less dense) crust thanin mafic crust, causing the magmas to be erupted at a laterpoint in the crystallization history.  相似文献   

7.
SEN  GAUTAM 《Journal of Petrology》1986,27(3):627-663
Electron microprobe analyses of minerals of thirteen DeccanTrap lava flows at Mahabaleshwar have been carried out in thepresent study. All of these flows have tholeiitic bulk compositionsand all, except one (represented by MB-81-17 of Mahoney et al.,1982) contain olivine, plagioclase, two pyroxenes, and Fe-Tioxide minerals. Olivine and plagioclase appear as distinct phenocrystsin all but one flow, and Ca-rich pyroxene joins as a phenocrystphase in the younger flows. Pigeonite and Fe-Ti oxide minerals(titanomagnetite and ilmenite) occur in the groundmass. Olivineoccurs as both groundmass and phenocryst phase in MB-81-17 (whichis the only flow without low-Ca pyroxene phase); in all otherflows olivine appears only as phenocryst phase. In all but one(MB-81-17) flow olivine is completely altered. MB-81-17 olivinegrains are only partly altered, and in this rock the cores ofphenocrysts are rounded and have a composition of Fo77 whereastheir euhedral rims have a composition around Fo67. The groundmassolivine grains in MB-81-17 are Fo41–32. Substantial Fe-enrichmentand zoning trends are shown by the pyroxenes in individual rocks.The cores of Ca-rich pyroxene phenocrysts of some of the flowshave as much as 4 wt. per cent A12O3 and may have crystallizedat higher (crustal) pressures. Pigeonite thermometry (Ishii,1975) suggests an average of 1050?C for crystallization of thegroundmass pigeonite (eruption temperature?). Fe-Ti oxide mineralsare mostly altered in the older flows. In the younger flows,coexisting unaltered titanomagnetite and ilmenite yield maximumtemperature estimates for the crystallization of these phaseof about 1025?C and an oxygen fugacity of 10–11.5 atm.The T-fo2 path followed by these flows seems to have been consistentlysomewhat lower than that defined by the 1 atm. fayalite-magnetitequartz curve. All of the lavas examined have experienced extensivefractional crystallization of olivine and some clinopyroxeneat relatively higher pressures. These lavas were saturated orclose to being saturated with olivine+plagioclase+clinopyroxeneduring eruption. Plagioclase accumulation, although it appearsto have occurred, has not been significant. It is suggestedthat MB-81-17 magma was contaminated by a calcite-rich rock(limestone?) whereas the lower Group 1 magmas may have beenselectively contaminated by quartz-bearing contaminant. Alternately,parental magma of MB-81-1 (with the highest Mg-number and 8= -16) may have been produced in the upper mantle into whichminor masses of old crust was well mixed. Magma mixing, crystalfractionation, and contamination processes of Mahabaleshwarbasalts and possible genetic relationships with other DeccanTrap lavas are discussed.  相似文献   

8.
攀枝花岩体钛铁矿成分特征及其成因意义   总被引:2,自引:1,他引:1  
峨眉大火成岩省是全球最大的钒钛磁铁矿床聚集区,攀枝花岩体是其中的典型代表。根据岩性特点,攀枝花岩体主体可划分为上、中、下三个岩相带,其中中部岩相带和下部岩相带岩性旋回非常发育,每个旋回从下向上铁钛氧化物和暗色硅酸盐矿物逐渐减少,块状铁钛氧化物矿石或磁铁矿辉长岩都出现在每个旋回的底部和下部。然而,尽管钛铁矿固相线以下固溶体出溶远弱于磁铁矿,从而能更好地保留成因信息,但其成分变化的成因意义没有受到足够重视。本次研究发现作为主要金属氧化物之一的钛铁矿的成分不仅在不同岩性中有明显差异,同时,中、下部岩相带的各岩性旋回中钛铁矿成分也具有周期性变化。例如,块状矿石中钛铁矿具有最高的MgO和TiO2及最低的FeO、Fe2O3和MnO,而辉长岩中钛铁矿则具有相反的成分特征。同时,钛铁矿的MgO含量与磁铁矿的MgO含量及橄榄石的Fo牌号具有显著的正相关关系。这种规律性变化说明每个旋回可以代表一次比较明显的岩浆补充,每次新岩浆补充后,钛铁矿和磁铁矿及橄榄石都是结晶较早的矿物。与Skaergaard岩体相比,攀枝花岩体钛铁矿的MgO含量较高,表明攀枝花岩体分离结晶过程中铁钛氧化物结晶较早;与挪威Tellnes斜长岩套铁钛矿床中的钛铁矿相比,攀枝花岩体的钛铁矿不仅具有较高的MgO和FeO,还具有极高的TiO2和MnO,但Fe2O3却很低,说明地幔柱背景下形成的钛铁矿与斜长岩套中钛铁矿的成分有显著的区别。  相似文献   

9.
One-atmosphere, melting experiments, controlled at the fayalite-magnetite-quartz oxygen buffer, on mildly alkalic and transitional basalts from Iceland show that these begin to crystallize Fe-Ti oxide minerals (magnetite and/or ilmenite) at 1105±5°C, apparently independently of bulk composition and the order of silicate and oxide mineral crystallization. Most samples crystalline plagioclase and olivine as the first two crystalline phases, augite as the third phase, and an Fe-Ti oxide mineral as the fourth phase. The main effects of Fe-Ti oxide crystallization are a marked decrease in FeO and TiO2 in the liquid, and a notable increase in SiO2 and Al2O3, and the minor oxides K2O and P2O5, with decreasing temperature. The most silicic glasses are compositionally mugearitic and shoshonitic basaltic andesites. Because the smallest amount of glass that could be analyzed with the microprobe represents 20–55 percent liquid remaining, it can be expected that more silicic liquids will occur at lower temperatures. On normative, pseudoternary projections, the general effect of Fe-Ti oxide crystallization for mildly alkalic and transitional basalts is a marked increase in normative quartz. This is caused by a strong systematic convergence, with the appearance of Fe-Ti oxides, of the bulk solid precipitates toward the liquid compositions, as projected on the triangle plagioclase-diopside-olivine. For alkalic basalts, the bulk solid precipitate shows an increase in normative diopside with falling temperature and Fe-Ti oxide crystallization. This causes the liquids to move toward decreasing normative diopside and relatively little variation in nepheline. The experimental observations imply that mildly alkalic and transitional magmas, without stabilizing a Fe-Ti oxide mineral, will not evolve toward early silica saturation.  相似文献   

10.
The Los Humeros volcanic center, located 180 km east of MexicoCity, is one of several silicic centers in the ‘back-arc’portion of the Mexican Neovolcanic Belt. Eruptive products spanthe compositional range from high-silica rhyolite to basalt.During the last 0?46 Ma, three major explosive eruptions andan extended period of lava flow emplacement periodically sampledan integrated magma reservoir that was initially zoned fromrhyolitic uppermost levels to andesitic and perhaps basalticlower levels, with compositional gaps in the ranges 63–67and 72–75 per cent SiO2. The compositional zonation canlargely be explained by fractional crystallization, but mustbe accompanied by assimilation to explain the range of Sr andNd isotopic ratios. Higher than predicted concentrations ofNi, Cr, and strongly incompatible elements such as Rb and Bain andesites suggest continuous replenishment of a fractionatingchamber by mantle-derived basalts. The volumetric predominanceof rhyolite in the early history of the center points to a longperiod of accumulation of differentiates without eruptive withdrawal. Once volcanic activity started tapping the chamber, eruptiverates seem to have exceeded the rate of regeneration of differentiatedmagma. Although there is overlap in the compositional zonationof the products of successive eruptive events, the dominantvolume of each is always more mafic than that of the precedingeruption, indicating only limited regeneration of differentiatedmagmas during repose periods. This seems to have been a consequenceof the chamber remaining in approximate thermal balance duringthe last 0?46 Ma, as shown by similar Fe-Ti oxide temperaturesfor given magma compositions, regardless of age. Calculationssuggest that the chamber received thermal input through theinjection of basalt at an average rate of 0?1 km3 per thousandyears. Apparently this thermal input was too small to generatedifferentiated magma by partial melting of the wall rocks ofthe chamber, but large enough to offset conductive or hydrothermalcooling that would promote differentiation by extensive crystallization.  相似文献   

11.
产于层状镁铁质-超镁铁质岩体中的太和岩浆型Fe-Ti氧化物矿床是峨眉山大火成岩省内带几个超大型Fe-Ti氧化物矿床之一。太和岩体长超过3km,宽2km,厚约1.2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5%~12%磷灰石、20%~35%Fe-Ti氧化物、50%~60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO2、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO分别与TiO2、MgO显示负相关,而FeO分别与Fe2O3、MnO显示正的相关,且TiO2、FeO、MnO、MgO含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr2O3(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿Cr2O3(0.00%~0.03%)显著降低,且这些磁铁矿Cr2O3含量变化与单斜辉石Cr含量和斜长石An牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti+V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。  相似文献   

12.
对西昆仑普鲁新生代火山岩的矿物学进行了系统的研究。结果表明:该地区火山岩主要由橄榄石、单斜辉石和斜长石组成,并有少量的斜方辉石、黑云母、角闪石、碱性长石和铁钛氧化物。其矿物学特征指示了岩浆的性质有点类似于碱性岩浆,但与典型的碱性玄武岩又有明显的区别,属于橄榄安粗岩系列。利用橄榄石-熔体平衡原理估算了进入高位岩浆房中的熔体的MgO含量约为6.2%,Mg^#为0.57,说明其不是地幔熔融形成的原始岩浆,而是经历了深部岩浆房的分离结晶过程。由单斜辉石估算的高位岩浆房的深度约7~9km。岩浆在高位岩浆房中发生了较长时间的强烈分离结晶作用,分离结晶相主要为橄榄石、单斜辉石和斜长石以及少量的斜方辉石、黑云母、角闪石、碱性长石和铁钛氧化物。不同时期形成的铁钛氧化物指示了分离结晶过程由相对高温高氧逸度向相对低温低氧逸度演化。与此相对照的是岩浆在深部岩浆房中可能只发生了橄榄石和辉石等铁镁矿物的分离结晶作用,且分异作用时间较短。深部岩浆房可能存在于岩石圈地幔或壳幔过渡带中,岩浆由深部岩浆房上升到高位岩浆房中的过程是近绝热的,从浅部岩浆房到地表是快速上升的过程。  相似文献   

13.
Ilmenite and magnetite are investigated from the point of viewof their distribution, microtexture, and chemical composition(major and minor elements) in the Bjerkrem-Sogndal massif (Egersundarea, South-Rogaland, SW. Norway). This massif is an igneouslayered synkinematic lopolith made up of cumulates of the anorthosite-mangeritesuite. The lower part of the massif presents a rhythmic structure. The microtextures of ilmenite result from simple exsolutionof ilmenite-hematite solid solutions. Magnetite contains intergrowthsof ilmenite formed by oxidation-exsolution of ulv?spinel-magnetitesolid-solutions. In the stratigraphic sequence, on a large scale, ilmenite appearsfirst alone, and is then accompanied by magnetite; its hematitecontent decreases towards the top of the massif, while the titaniumcontent of the magnetite increases. On the scale of the rhythms,similar trends but of lesser amplitude are also observed. Evidence of deuteric readjustment of the orthomagmatic compositionof the two oxides is provided (1) by the observation of microtexturesat the contact between grains (zoning of primary ilmenite andrim of secondary ilmenite) (2) by the existence of differencesin chemical composition between isolated grains and grains incontact, and (3) by the determination of the equilibrium temperatureby means of the Buddington and Lindsley geothermometer. Reconstitution of the T-fo2 orthomagmatic conditions in twoparticular levels of the massif shows that the reducing characterof the magma increases during differentiation. The sudden changesin the oxide assemblage at the base of the rhythms reflect asudden increase in the fo2 of the magma. These increases, asshown by variation in Cr, Ni, and Co, are due to recurrencesof the basic character of the magma. The variations of the minor elements Mn, V, Ga, and Zn are interpretedin terms of the influence of the deuteric readjustment. It followsthat the ratios Mn/Fe2+, Ga/Fe3+, and Zn/Fe2+ increase and thatthe ratio V/Fe3+ decreases in the magma in the course of differentiation.The distribution of Mn between ilmenite and magnetite is discussed. Intermittent supplies of undifferentiated magma are proposedas the geological mechanism controlling the chemical recurrencesassociated with the rhythmic structure.  相似文献   

14.
Volcanological and petrological evidence, 87Sr/86Sr data, thelinear correlation between pairs of residual elements (e.g.Th, U, Zr, Hf, La, Ce, Ta) indicate that the rock series frommildly alkaline (transitional) basalt to pantellerite eruptedin recent Quaternary times at the Boina volcanic centre, canbe entirely explained in terms of fractional crystallizationat shallow depth. The fractionation process has been reconstructedby referrin to variation diagrams of major and trace elementsreported as a function of the fraction (f) of the initial compositionformed by the residual liquid, evaluated from the distributionof residual elements and by estimating the composition of theparent magma. The main crystal phases involved in the differentiationare, in the order of appearance: olivine, plagioclase, clinopyroxene,Fe-Ti oxides, alkali feldspar. Crystallization of Fe-Ti oxidesoccurs only at an advanced stage of fractionation in iron richliquids (ferrobasalts). The transition to the peralkaline field(near f=0?20) occurs without passing through a ‘true’trachytic (low-silica) salic stage and is determined by the‘plagioclase effect’. Fractionation within the peralkalinefield is dominated by alkali feldspar. Evidence is given fora ‘low-temperature zone’ of the oversaturated mildlyperalkaline system running along a line of constant alkali-ratio.Po2 variations are recorded during the evolution of the Boinaseries as suggested by petrological data and distribution curvesof total iron, Fe++/Fe+++and europium. Po2 values calculatedfrom europium distribution in feldspar and whole rocks agreewith published Po2 mineralogical calculations in pantelleritesfrom other localities. A crucial stage is recognized near thetransition to the peralkaline field, with a sudden Po2 dropduring the crystallization of the oxides probably provokingthe precipitation of apatite, followed by a rapid Po2 increaseat f=0?30. This limited oxygen unbuffered zone is importantin the basalt-pantellerite evolution, as it determines markedchemical variations in a restricted crystallization interval.It is suggested that such a crucial stage occurs also in theother known pantellerite series, such as Pantelleria. It mayalso account for the scarcity of rocks frequently reported atthis stage (‘Daly gap’). Data obtained from Boina and comparisons with other volcanicseries indicate that many peralkaline rhyolites are geneticallyrelated to transitional basalts and that their nature is mainlycontrolled by the composition of the parent basaltic magma.The association is characteristically found in zones of extensionof both continental and oceanic environments. The views of Coombs(1963) are confirmed and the rocks series from transitionalbasalts to comendites and/or pantellerites should be distinguishedfrom the alkalic (undersaturated) igneous rock suites producedby differentiation of alkali basalts.  相似文献   

15.
陕南凤凰岭南缘变质镁铁质—超镁铁质侵入岩为富含Fe、Ti等有用元素的含矿岩体。利用岩石地球化学方法、偏光显微镜和电子探针技术对该区镁铁质—超镁铁质侵入岩的岩石学、地球化学和矿物学特征进行了研究,并对Fe-Ti氧化物的形成、富集进行了初步探讨,对成岩、成矿作用具有一定的参考意义。结果表明,成矿镁铁质—超镁铁质侵入岩与非成矿镁铁质—超镁铁质侵入岩为不同岩浆源区、同期岩浆作用的产物,镁铁质—超镁铁质侵入岩类的Fe-Ti矿化作用与初始岩浆的源岩之间具有密切关系。Fe-Ti氧化物主要以钛铁矿和榍石的形式存在,局部见少量金红石。化学成分上,钛铁矿具富锰贫镁特征,本区Fe-Ti氧化物的形成和富集过程经历了岩浆结晶分异阶段和热液蚀变阶段。  相似文献   

16.
罗雕  侯通  潘荣昊 《岩石学报》2020,36(7):2116-2126
本文报道了攀枝花钒钛磁铁矿含矿岩体边缘岩相带中的苦橄玢岩和岩体中淡色辉长岩的锆石微量元素特征。结果表明二者所含锆石都具有明显的Ce正异常和Eu负异常,以及轻稀土元素亏损和重稀土元素富集的特征,其Th/U比值为0.35~3.23,都属于典型的岩浆锆石。本次研究利用最新实验标定的锆石氧逸度计对苦橄玢岩和淡色辉长岩的氧逸度进行了估算。估算结果表明苦橄玢岩和淡色辉长岩均具较高的氧逸度,分别为QFM+0.3~QFM+2.5和QFM+0.7~QFM+3(QFM为石英-铁橄榄石-磁铁矿缓冲剂)。苦橄玢岩作为来自深部岩浆房侵入到攀枝花主岩体的富橄榄石"晶粥体",其高氧逸度的特征反映出攀枝花岩体的原生岩浆以及地幔源区是相对氧化的,而导致这一结果的原因很可能与古老俯冲事件导致的地幔交代作用有关。通过地幔柱-岩石圈相互作用,在较高氧逸度下发生部分熔融形成了铁质苦橄岩及其堆晶作用产物苦橄玢岩。此外,淡色辉长岩的氧逸度也显示出较高的特征,这说明这种氧化的特征很可能是贯穿了整个成岩过程的,对钒钛磁铁矿成矿,特别是导致铁钛氧化物早期结晶起到了不可忽视的作用。  相似文献   

17.
The Bjerkreim-Sokndal layered intrusion is part of the Rogaland anorthosite Province of southern Norway and is made of cumulates of the anorthositemangerite-charnockite suite. This study presents experimental phase equilibrium data for one of the finegrained jotunite (Tjörn locality) occurring along its northwestern lobe. These experimental data show that a jotunitic liquid similar in composition to the Tjörn jotunite, but slightly more magnesian and with a higher plagioclase component is the likely parent of macrocyclic units (MCU)III and IV of the intrusion. The limit of the olivine stability field in the experimentally determined phase diagram as well as comparison of the Al2O3 content of low-Ca pyroxenes from experiments and cumulates (1.5%) yields a pressure of emplacement 5 kbar. Experimentally determined Fe-Ti oxide equilibria compared to the order of cumulus arrival in the intrusion show that the oxygen fugacity was close to FMQ (fayalite-magnetite-quartz) during the early crystallization. It subsequently decreased relative to this buffer when magnetite disappeared from the cumulus assemblage and then increased until the reentry of this mineral. Calculated densities of experimental liquids show a density increase with fractionation at 7, 10 and 13 kbar due to the predominance of plagioclase in the crystallizing assemblage. At 5 kbar and 1 atm (FMQ-1), where plagioclase is the liquidus phase, density first increases and then drops when olivine (5 kbar) or olivine+ilmenite (1 atm: FMQ-1) precipitate. At 1 atm and NNO (nickel-nickel oxide), the presence of both magnetite and ilmenite as near liquidus phases induces a density decrease. In the Bjerkreim magma chamber, oxides are early cumulus phases and liquid density is then supposed to have decreased during fractionation. This density path implies that new influxes of magma emplaced in the chamber were both hotter and denser than the resident magma. The density contrast inferred between plagioclase and the parent magma shows that this mineral was not able to sink in the magma, suggesting anin situ crystallization process.  相似文献   

18.
The Neoproterozoic Korab Kansi mafic-ultramafic intrusion is one of the largest (100 km2) intrusions in the Southern Eastern Desert of Egypt. The intrusion consists of Fe-Ti-bearing dunite layers, amphibole peridotites, pyroxenites, troctolites, olivine gabbros, gabbronorites, pyroxene gabbros and pyroxene-hornblende gabbros, and also hosts significant Fe-Ti deposits, mainly as titanomagnetite-ilmenite. These lithologies show rhythmic layers and intrusive contacts against the surrounding granites and ophiolitic-island arc assemblages. The wide ranges of olivine forsterite contents (Fo67.9-85.7), clinopyroxene Mg# (0.57–0.95), amphibole Mg# (0.47–0.88), and plagioclase compositions (An85.8-40.9) indicate the role of fractional crystallization in the evolution from ultramafic to mafic rock types. Clinopyroxene (Cpx) has high REE contents (2–30 times chondrite) with depleted LREE relative to HREE, like those crystallized from ferropicritic melts generated in an island-arc setting. Melts in equilibrium with Cpx also resemble ferropicrites crystallized from olivine-rich mantle melts. Cpx chemistry and its host rock compositions have affinities to tholeiitic and calc-alkaline magma types. Compositions of mafic-ultramafic rocks are depleted in HFSE (e.g. Nb, Ta, Zr, Th and U) relative to LILE (e.g. Li, Rb, Ba, Pb and Sr) due to the addition of subduction-related hydrous fluids (rich in LILE) to the mantle source, suggesting an island-arc setting. Fine-grained olivine gabbros may represent quenched melts approximating the primary magma compositions because they are typically similar in assemblage and chemistry as well as in whole-rock chemistry to ferropicrites. We suggest that the Korab Kansi intrusion crystallized at temperatures ranging from ~700 to 1100 °C from ferropicritic magma derived from melting of metasomatized mantle at <5 Kbar. These hydrous ferropicritic melts were generated in the deep mantle and evolved by fractional crystallization under high ƒO2 at relatively shallow depth. Fractionation formed calc-alkaline magmas during the maturation of an island arc system, reflecting the role of subduction-related fluids. The interaction of metasomatized lithosphere with upwelling asthenospheric melts produced the Fe and Ti-rich ferropicritic parental melts that are responsible for precipitating large quantities of Fe-Ti oxide layers in the Korab Kansi mafic-ultramafic intrusion. The other factors controlling these economic Fe-Ti deposits beside parental melts are high oxygen fugacity, water content and increasing degrees of mantle partial melting. The generation of Ti-rich melts and formation of Fe-Ti deposits in few layered intrusions in Egypt possibly reflect the Neoproterozoic mantle heterogeneity in the Nubian Shield. We suggest that Cryogenian-Tonian mafic intrusions in SE Egypt can be subdivided into Alaskan-type intrusions that are enriched in PGEs whereas Korab Kansi-type layered intrusions are enriched in Fe-Ti-V deposits.  相似文献   

19.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   

20.
The Potato River intrusion is a Keweenawan (1100 Ma) mafic plutonemplaced in Keweenawan volcanics and earlier Proterozoic metasedimentaryrocks along the southeastern flank of the Lake Superior syncline.It comprises the following lithostratigraphic zones: a thinto absent Border zone of altered olivine gabbro; a Lower zoneof olivine gabbro; a Picritic zone of picrite and troctolite;a Middle zone of olivine gabbro and leucogabbro; an Upper zoneof quartz leucogabbro and ferrogabbro; and a Roof zone of granophyricand granitic rocks. Fractional crystallization is evident fromcompositional changes in the rocks and cumulus minerals withstratigraphic height. Elements concentrated in the cumulus mineralsolivine and plagioclase (Mg, Fe2+, Al, Ca, Ni, Co, Cr, Sr) decreasewith height; elements concentrated in the trapped liquid (Na,K, La, Y, Zr, Nb, Rb, Ba) increase with height; and other elements(Ti, Fe3+, P, Ga, V, Sc, Cu, Zn) show complicated behavior relatedto the appearance of additional cumulus phases such as clinopyroxene,Fe-Ti oxides, and apatite. Lower zone rocks contain some sulfide,probably from sulfur derived from the country rock, and theUpper zone has sulfides probably precipitated from an immisciblesulfide liquid. The sulfide-bearing rocks have similaritiesto those of other intrusions, such as Bushveld, Stillwater,and Skaergaard. The picritic and troctolitic rocks of the Picritic zone indicatethat the intrusion was open to additional injections of maficmagma. Roof zone granophyric rocks are residual liquids intrudedalong the upper margin of the intrusion during regional tilting,but Roof zone granitic rocks are probably melted country rock.An attempt is made to estimate by reverse stratigraphic summationthe compositional path of the magma that solidified above thePicritic zone. The first compositions are highly aluminous,which suggests that the upper part of the intrusion has beenenriched in plagioclase by convection-aided crystal sorting.A complementary unit of mafic rocks is not exposed, but it couldbe present down dip. Some of the later compositions are similarto typical Keweenawan high-Al tholeiites. The magma did notundergo extreme iron enrichment, probably because of oxygenfugacity buffering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号