首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A zone of synchronous end moraines has been recognized in the Lake Superior region across northern Ontario and Michigan. The moraines were formed between 11,000 and 10,100 y.a. as cold climate resulted in successive halts in the general ice retreat. The cold climate is also indicated by the presence of tundra near Lake Superior until about 10,000 y.a. This episode is here referred to as the Algonquin Stadial. It was preceded and followed by rapid deglaciation. The Algonquin Stadial is comparable in age with the Younger Dryas Stadial of Europe, and indicates a reversal in the continuous trend toward a warmer climate during Late-Wisconsin (an) time. The apparent conflict between the present result (based on geologic evidence) and earlier pollen stratigraphical studies with no reversal is discussed.Glacial Lake Duluth formed in the western Lake Superior basin before 11,000 BP, followed by a series of Post-Duluth lakes between approximately 11,000 and over 10,100 BP. The Main Lake Algonquin stage in the Huron and Michigan basins terminated approximately 11,000 BP. The subsequent high-level post-Main Algonquin lakes, which were contemporaneous with the Post-Duluth lakes, existed in the southeastern Lake Superior basin. When the ice margin was along the north shore 9500 BP Lake Minong occupied the whole Lake Superior basin. By 9000 BP the ice had retreated north of Lake Superior-Hudson Bay divide.  相似文献   

2.
Molluscs, ostracodes, diatoms, pollen, plant macrofossils, peat, and wood have been found in glacial Lake Algonquin sediments, and estuarine-alluvial sediments of the same age, in southern Ontario. Molluscs and ostracodes are particularly abundant and widespread. Pollen analysis of Lake Algonquin sediments, bogs on the Algonquin terrace, and upland bogs above the Algonquin terrace, indicate that Lake Algonquin was still in existence at the time of the spruce-pine pollen transition, previously dated at an average of 10,600 yr BP at a number of sites in Michigan, Ohio, and southern Ontario. Wood in estuarine-alluvial sediments graded to the Algonquin level is of similar radiocarbon age. Evidence from several sites in the eastern Great Lakes area suggests the presence of a preceding low-water stage (Kirkfield outlet stage); drowned and alluviated valleys and fining-upward sediment sequences have been identified in this study as further supporting evidence. Lake Algonquin drained from the southern sites by isostatic tilting and eventual opening of the “North Bay outlet” some time shortly after 10,400 yr BP.Our radiocarbon dates suggest the low-water stage has an age of about 11,000 yr BP, and that Lake Algonquin drained 10,000–15,000 y. a. Dates previously published for the Lake Michigan basin are generally too young in comparison with ours, and dates on the Champlain Sea are generally too old. More critical evaluation of all dating results is desirable.From fossil remains we suggest a rapidly expanding fauna in the waters of Lake Algonquin. The spruce pollen period was a time of rapid faunal and floral migration, when the ice front was retreating from Kirkfield to North Bay, Ontario. Diversity of some species and fossil numbers increased substantially at the transition from spruce to pine just before Lake Algonquin drained.  相似文献   

3.
A new and significant site of organic silty sand has been found beneath the Valders till at Valders Quarry in northeastern Wisconsin. This is now the earliest known late-glacial site associated with red till ice advances in the western Great Lakes area. Leaves of terrestrial plants washed into a small depression provide a date of 12,965 ± 200 yr B.P. (WIS-2293), which is significantly older than the Two Creeks Forest Bed (ca. 11,800 yr B.P.). Percentage and concentration pollen diagrams suggest that the site was open and distant from a closedPiceaforest. No wood orPiceaneedles have been found. This date is statistically indistinguishable from 12,550 ± 233 yr B.P., the mean of three dates for the end of inorganic varve sedimentation at Devils Lake, 160 km southwest at the terminus of the Green Bay Lobe. Assuming that the Green Bay lobe vacated its outermost moraine in the interval from 13,000 to 12,500 yr B.P., only a short time was available for retreat of the ice margin over 350 km, drainage of red sediment from Lake Superior into the Lake Michigan basin, readvance of over 250 km, retreat of at least 80 km, and advance to this site. The time for these events appears to have been too short to resolve by current radiocarbon technique. This extremely rapid collapse of the Green Bay lobe has a calibrated age of about 15,000 cal yr B.P., about that of the dramatic warming seen in the Greenland ice cores.  相似文献   

4.
The highest shoreline features of paleo-Lake Malheur are undated gravelly barrier beaches south of Harney Lake that lie ca. 3.5 m higher than the hydrographic outlet of Harney Basin at Malheur Gap (1254 m). The earliest Quaternary record for Lake Malheur consists of occurrences of water-deposited tephra dated to ca. 70,000–80,000 yr ago. The next identified lake interval is dated by shells with ages of ca. 32,000 and 29,500 yr B.P. No dates are available for the terminal-Pleistocene Lake Malheur. Lake(s) were present between ca. 9600 and 7400 yr B.P., although periodic low levels or desiccation are suggested by a paleosol dated as ca. 8000 yr B.P. The lake system probably dried further after 7400 yr B.P., although dates are lacking for the period between ca. 7400 and 5000 yr B.P. Dune deposits on the lake floor are ca. 5000 yr old and indicate generally dry conditions. Fluctuating shallow lakes have probably characterized the last 2000 years. A date of 1000 yr B.P. gives a maximum age for beach deposits at 1254 m, near the basin threshold elevation. Thus, the Malheur Lake system may have drained to the Pacific Ocean by way of Malheur Gap during the latest Holocene.  相似文献   

5.
Mollusks were studied from six sites in Lake Algonquin deposits (12,000-10,000 yr B.P.), five transitional (Lake Stanley low stage; 10,000 – 6000 yr B.P.), and six Nipissing stage sites (6000-4000 yr B.P.) east of Lake Huron in southwestern Ontario. The sites represent a variety of near-shore, lagoonal, estuarine, and fluvial environments. Eighteen species were limited to occurrences in Algonquin stage deposits; 8 were found only in the transitional age sites; and 14 species were restricted to Nipissing stage localities. With the possible exception of Goniobasis livescens, which occurred at five of the six Nipissing stage sites, the remaining stratigraphically limited species were usually restricted to one or two localities and probably cannot be used as zone fossils. Some cold-tolerant species (e.g., Anodonta grandis simpsoniana) were very early migrants into the study area, while others arrived later, apparently from eastern, southern, and western sources. Mollusks proved useful in paleoenvironmental reconstructions and to a lesser extent in biostratigraphic zonation.  相似文献   

6.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.  相似文献   

7.
The outer coast of Finnmark in northern Norway is where the former Fennoscandian and Barents Sea ice sheets coalesced. This key area for isostatic modelling and deglaciation history of the ice sheets has abundant raised shorelines, but only a few existing radiocarbon dates constrain their chronology. Here we present three Holocene sea level curves based on radiocarbon dated deposits from isolation basins at the outermost coast of Finnmark; located at the islands Sørøya and Rolvsøya and at the Nordkinn peninsula. We analysed animal and plant remains in the basin deposits to identify the transitions between marine and lacustrine sediments. Terrestrial plant fragments from these transitions were then radiocarbon dated. Radiocarbon dated mollusk shells and marine macroalgae from the lowermost deposits in several basins suggest that the first land at the outer coast became ice free around 14,600 cal yr BP. We find that the gradients of the shorelines are much lower than elsewhere along the Norwegian coast because of substantial uplift of the Barents Sea. Also, the anomalously high elevation of the marine limit in the region can be attributed to uplift of the adjacent seafloor. After the Younger Dryas the coast emerged 1.6–1.0 cm per year until about 9500–9000 cal yr BP. Between 9000 and 7000 cal yr BP relative sea level rose 2–4 m and several of the studied lakes became submerged. At the outermost locality Rolvsøya, relative sea level was stable at the transgression highstand for more than 3000 years, between ca 8000 and 5000 cal yr BP. Deposits in five of the studied lakes were disturbed by the Storegga tsunami ca 8200–8100 cal yr BP.  相似文献   

8.
AMS-dated sediment cores combined with ground-penetrating radar profiles from two lakes in southeastern Massachusetts demonstrate that regional water levels rose and fell multiple times during the Holocene when the known climatic controls (i.e., ice extent and insolation) underwent unidirectional changes. The lakes were lowest between 10,000 and 9000 and between 5500 and 3000 cal yr B.P. Using a heuristic moisture-budget model, we explore the hypothesis that changes in seasonal precipitation regimes, driven by monotonic trends in ice extent and insolation, plausibly explain the multiple lake-level changes. Simulated lake levels resulting from low summer precipitation rates match observed low lake levels of 10,000-9000 cal yr B.P., whereas a model experiment that simply shifts the seasonality of the modern Massachusetts precipitation regime (i.e., moving the peak monthly precipitation from winter to summer) produces levels that are ∼2 m lower than today as observed for 5500-3000 cal yr B.P. The influence of the Laurentide ice sheet could explain dry summers before ca. 8000 cal yr B.P. A later shift from a summer-wet to a winter-wet moisture-balance regime could have resulted from insolation-driven changes in the influence of the Bermuda subtropical high. Temperature changes probably further modified lake levels by affecting snowmelt and transpiration.  相似文献   

9.
Examination of a sample of 150 fluted-point localities from southern Ontario, Canada in relation to datable features of Late Wisconsinan ice retreat discloses maximum possible ages for early Palaeo-Indian occupation and reveals selection of specific physiographic situations. General relationship to maximum ice-advance positions suggests occupation during the Two Creeks Interstade after Port Huron ice retreat about 12,300 yr B.P. Specific relationship to 14C-dated proglacial Great Lake strands favors occupation during the North Bay Interstade after Greatlakean ice retreat about 11,500 yr B.P. Locality frequency on Lake Algonquin strands suggests contemporaneity with the main stage of this lake about 11,500 to 10,400 yr B.P., with a small number of lake-plain localities indicating minor post-Algonquin persistence. Radiocarbon dates for fluted-point sites elsewhere in the glaciated northeast place occupation coeval with the southwestern Folsom fluted-point tradition of about 10,850 to 10,200 yr B.P. Locality situation in regions dominated by proglacial sediments, on lake-edge features adjacent to strand-dissecting tributaries, within major river valleys, implies selectivity reflecting primary adaptation. Fluted-point associations with caribou and elk remains suggest that “focal” adaptation to cervids, comparable to southwestern Folsom bison exploitation, might underlie the homogeneous nature and distribution of early Palaeo-Indian localities throughout the northeast.  相似文献   

10.
Approximately 8000 km of continuous seismic reflection profiles throughout Lake Superior were examined for evidence of recessional moraines and other ice-margin deposits associated with the retreat of late Wisconsin ice. These features are correlated with the record of glacial-lake evolution in western Lake Superior. An offlapping sequence of glacial and glacial-lacustrine dediments overlying bedrock is recognized in west-central Lake Superior that is progressively younger to the northeast. The sequence underlies more recent glaical-lacustrine and postglacial sediments. Four facies are recognized on the basis of geomorphologic and acoustic properties and are interpreted to represent a southwest-to-northeast assemblage of: proglacial stratified drift (facies A), drift in major end moraines (facies B), till deposited as glacial retreat resumed, or possibly late-stage ablation till (facies C), and basal till (facies D). The prominent moraines of facies B are unusually thick and are believed to mark the ice-margin shorelines of successive major proglacial lakes that formerly occupied parts of western Lake Superior. The moraines are tentatively correlated with Glacial Lake Duluth (unit 1), Glacial Lake Washburn (unit 2), and Glacial Lake Beaver Bay (unit 3), the most prominent of lakes drained via the progressively lower outlets via the Moose Lake/ Brule-St. Croix Rivers, the Huron Mountains, and the Au Train-Whitefish regions, respectively.  相似文献   

11.
Paleoindian peoples migrated into the cul-de-sac between Lake Agassiz, the Superior basin, and the receding ice margin about 9500 years ago. Around Thunder Bay there is a close but not exclusive association of habitation sites with Lake Minong and its subsequent declining stages. Reconstruction of shorelines by detailed morphological mapping provides explanation of known sites, reasonable longshore correlation, and a predictive tool for focusing new investigations. Sites near taconite sources, in sheltered embayments, at river mouths, and near lookout points are preferred, but some occupance continued after water level decline. the full sequence of Paleoindian to Shield Archaic periods is uniquely destroyed by the Nipissing transgression (8000-5500 years BP), which buried and truncated earlier shorelines. This sequence is potentially preserved on the north shore of Superior, but limited archaeological resources exist in the region, despite healthy, interdisciplinary cooperation.  相似文献   

12.
Calibrated radiocarbon dates of organic matter below and above till of the last (Fraser) glaciation provide limiting ages that constrain the chronology and duration of the last advance–retreat cycle of the Puget Lobe in the central and southeastern Puget Lowland. Seven dates for wood near the top of a thick proglacial delta have a weighted mean age of 17,420 ± 90 cal yr B.P., which is the closest limiting age for arrival of the glacier near the latitude of Seattle. A time–distance curve constructed along a flowline extending south from southwestern British Columbia to the central Puget Lowland implies an average glacier advance rate of ca. 135 m/yr. The glacier terminus reached its southernmost limit ca. 16,950 yr ago and likely remained there for ca. 100 yr. In the vicinity of Seattle, where the glacier reached a maximum thickness of 1000 m, ice covered the landscape for ca. 1020 yr. Postglacial dates constraining the timing of ice retreat in the central lowland are as old as 16,420 cal yr B.P. and show that the terminus had retreated to the northern limit of the lowland within three to four centuries after the glacial maximum. The average rate of retreat was about twice the rate of advance and was enhanced by rapid calving recession along flowline sectors where the glacier front crossed deep proglacial lakes.  相似文献   

13.
A new diatom record from Lake Victoria’s Pilkington Bay, subsampled at 21- to 25-year intervals and supported by 20 AMS dates, reveals a ∼10,000 calendar year environmental history that is supported by published diatom and pollen data from two nearby sites. With their chronologies adjusted here to account for newly documented ancient carbon effects in the lake, these three records provide a coherent, finely resolved reconstruction of Holocene climate change in equatorial East Africa. After an insolation-induced rainfall maximum ca. 8800-8300 cal yr B.P., precipitation became more seasonal and decreased abruptly ca. 8200 and 5700 yr B.P. in apparent association with northern deglaciation events. Century-scale rainfall increases occurred ca. 8500, 7000, 5800, and 4000 yr B.P. Conditions after 2700 yr B.P. were generally similar to those of today, but major droughts occurred ca. 1200-600 yr B.P. during Europe’s Medieval Warm Period.  相似文献   

14.
In order to establish paleoenvironmental conditions during the late Quaternary, four cores from the Basin of Mexico (central Mexico) were drilled in Chalco Lake, located in the southeastern part of the basin. The upper 8 m of two parallel cores were studied, using paleomagnetic, loss-on-ignition, pollen, and diatom analyses. Based on 11 14C ages, the analyzed record spans the last 19,000 14C yr B.P. Volcanic activity has affected microfossil abundances, both directly and indirectly, resulting in absence or reduction of pollen and diatom assemblages. Important volcanic activity took place between 19,000 and 15,000 yr B.P. when the lake was a shallow alkaline marsh and an increase of grassland pollen suggests a dry, cold climate. During this interval, abrupt environmental changes with increasing moisture occurred. From 15,000 until 12,500 yr B.P. the lake level increased and the pollen indicates wetter conditions. The highest lake level is registered from 12,500 to ca. 9000 yr B.P. The end of the Pleistocene is characterized by an increase in humidity. From 9000 until ca. 3000 yr B.P. Chalco Lake was a saline marsh and the pollen record indicates warmer conditions. After 3000 yr B.P. the lake level increased and human disturbance dominates the lacustrine record.  相似文献   

15.
A sediment core from Smorodinovoye Lake (SML), northeastern Siberia (area to the east of the Verkhoyansk Range) spanning the last 24,000 14C yr indicates that vegetational and climatic changes in the upper Indigirka basin resemble those in eastern Siberia (Lena basin and westward). For example, maximum postglacial summer temperatures at SML probably occurred 6000–4000 14C yr B.P., an age more in accordance with eastern than northeastern records. Larix arrived near the lake by 9600 14C yr B.P., approximately when forests expanded in the east but ca. 1500 14C yr later than forests were established in the neighboring upper Kolyma basin. Paleobotanical data further suggest that Larix possibly migrated southward from populations in the arctic lowlands of eastern Siberia and did not originate from interior refugia of the upper Kolyma basin. Although a Younger Dryas cooling has been noted in eastern Siberia, SML provides the first evidence from the northeast for a similar climatic reversal. Climatic variations seemingly have persisted between the Indigirka and Kolyma basins over at least the last 11,000 14C yr, despite the proximity of the two drainages and the occurrence of major changes in boundary conditions (e.g., seasonal insolation, sea levels) that have influenced other regional climatic patterns.  相似文献   

16.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

17.
This article investigates changing lake levels in the late Pleistocene eastern Great Lakes in order to gain insights into the Early Palaeo‐Indian occupations. Significant new information bearing on lake level history is provided, notably the first well‐documented deposits of a high water level above modern in the ca. 11,000–10,300 B.P. period in the southern Lake Huron basin. The lake level information, along with paleoenvironmental and site data, reinforces site age estimates to the 11th millennium B.P.; suggests significant numbers of sites have been inundated by rising water levels; provides specific information on the setting of archaeological sites such as placing the Parkhill site adjacent to a large lake estuary; indicates reasons for the attractiveness of shorelines to Palaeo‐Indians including persistence of more open areas conducive to higher game productivity; and points to ideal areas for future archaeological site survey, particularly in the Lake Erie drainage. © 2000 John Wiley & Sons, Inc.  相似文献   

18.
The transition from full glacial to interglacial conditions along the southern margin of the Laurentide ice sheet resulted in dramatic changes in landscapes and biotic habitats. Strata and landforms resulting from the Wisconsin Episode of glaciation in the area directly west of Lake Superior indicate a context for late Pleistocene biota (including human populations) connected to ice margins, proglacial lakes, and postglacial drainage systems. Late Glacial landscape features that have the potential for revealing the presence of Paleoindian artifacts include abandoned shorelines of proglacial lakes in the Superior and Agassiz basins and interior drainages on deglaciated terrains. The linkage between Late Pleistocene human populations and Rancholabrean fauna has yet to be demonstrated in the western Lake Superior region, although isolated remains of mammoth ( Mammuthus) have been documented, as well as fluted points assigned to Clovis, Folsom, and Holcombe‐like artifact forms. Agate Basin and Hell Gap (Plano‐type) artifacts also imply the presence of human groups in Late Glacial landscapes associated with the Agassiz and Superior basins. © 2007 Wiley Periodicals, Inc.  相似文献   

19.
Valleys tributary to the Mississippi River contain fossiliferous slackwater lake sediment (Equality Formation) deposited in response to aggradation of the Mississippi River valley during the last glaciation. In the St. Louis Metro East area, the lower part of the Equality Formation is primarily laminated, fossiliferous silt and clay deposited from about 44,150 to 24,310 14C yr B.P. The upper Equality Formation is primarily very fine sand to silt deposited from about 21,200 to 17,000 14C yr B.P. Among the four cores that sample this succession in the St. Louis Metro East area, core MNK-3 (38.64EN, 90.01EW) was selected for detailed study. Three sources are distinguished by the following characteristics: (1) gray smectite-quartz-Se-rich, feldspar-poor material of the Des Moines, Wadena, and James lobes; (2) reddish brown kaolinite-Cu-Fe-rich sediment of the Superior and Rainy lobes; and (3) brown illite-dolomite-Sr-rich sediment of the Lake Michigan and Green Bay lobes. The earliest sediments (44,150 to 41,700 14C yr B.P.) were derived from the central and western provenances and are chronocorrelative with the lower Roxana Silt. A hiatus occurred from about 41,700 to 29,030 14C yr B.P. when much of the middle Roxana Silt (Meadow Member) was deposited on adjacent uplands. The youngest sediment includes evidence of heightened activity of the Superior Lobe at about 29,000 14C yr B.P., the Lake Michigan and Green Bay lobes from about 25,000 to 24,000 14C yr B.P., and the Wadena-Des Moines-James lobes at about 21,000 14C yr B.P.  相似文献   

20.
Pollen analysis on a 9.54-m sediment core from lake Chignahuapan in the upper Lerma basin, the highest intermontane basin in Central Mexico (2570 m asl), documents vegetation and limnological changes over the past ∼23,000 14C yr. The core was drilled near the archaeological site of Santa Cruz Atizapán, a site with a long history of human occupation, abandoned at the end of the Epiclassic period (ca. 900 AD). Six radiocarbon AMS dates and two well-dated volcanic events, the Upper Toluca Pumice with an age of 11,600 14C yr B.P. and the Tres Cruces Tephra of 8500 14C yr B.P., provide the chronological framework for the lacustrine sequence. From ca. 23,000 14C yr B.P. to ca. 11,600 14C yr B.P. the plant communities were woodlands and grasslands based on the pollen data. The glacial advances MII-1 and MII-2 correlate with abundant non-arboreal pollen, mainly grasses, from ca. 21,000 to 16,000 14C yr B.P., and at ca. 12,600 14C yr B.P. During the late Pleistocene, lake Chignahuapan was a shallow freshwater lake with a phase of lower level between 19,000 and 16,000 14C yr B.P. After 10,000 14C yr B.P., tree cover in the area increased, and a more variable lake level is documented. Late Holocene (ca. 3100 14C yr B.P.) deforestation was concurrent with human population expansion at the beginning of the Formative period (1500 B.C.). Agriculture and manipulation of the lacustrine environment by human lakeshore populations appear at 1200 14C yr B.P. (550 A.D.) with the appearance of Zea mays pollen and abundant charcoal particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号