首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geomorphology and dynamics of the Mfolozi River floodplain and estuary, located in the subtropical region of northern KwaZulu-Natal, South Africa, were considered with respect to existing models of avulsion and alluvial stratigraphy. The Mfolozi River floodplain may be divided into regions based on longitudinal slope and dominant geomorphic processes. Confinement of the Mfolozi River above the floodplain has led to the development of an alluvial fan at the floodplain head, characterized by a relatively high sedimentation rate and avulsion frequency, at a gradient of 0.10%. The lower floodplain is controlled by sea level, with an average gradient of 0.05%. Between the two lies an extremely flat region with an average gradient of 0.02%, which may be controlled by faulting of the underlying bedrock.Avulsion occurrences on the Mfolozi floodplain are linked to the two main zones of aggradation, the alluvial fan at the floodplain head, and toward the river mouth in the lower floodplain. On the alluvial fan, normal flow conditions result in scour from local steepening. During infrequent, large flood events, the channel becomes overwhelmed with sediment and stream flow, and avulses. The resulting avulsion is regional, and affects the location of the channel from the floodplain head to the river mouth. Deposits resulting from such avulsions contribute significantly to the total volume of sediment stored in the floodplain, and tend to persist for long periods after the avulsion. Contrastingly, on the lower floodplain, reaching of the avulsion threshold is not necessarily linked to large flood events, but rather to long-term aggradation on the channel that decreases the existing channels gradient while increasing its elevation above the surrounding floodplain. Resultant avulsions tend to be local and do not contribute significantly to the overall volume of floodplain alluvium.  相似文献   

2.
This paper presents a GIS-based mathematical model for the simulation of floodplain sedimentation. The model comprises two components: (1) the existing hydrodynamic WAQUA model that calculates two-dimensional water flow patterns; and (2) the SEDIFLUX model that calculates deposition of sediment based on a simple mass balance concept with a limited number of model parameters. The models were applied to simulate floodplain sediment deposition over river reaches of several kilometres in length. The SEDIFLUX model has been calibrated and validated using interpolated raster maps of sediment deposition observed after the large magnitude December 1993 flood on the embanked floodplain of the lower river Rhine in the Netherlands. The model appeared to be an adequate tool to predict patterns of sediment deposition as the product of the complex interaction among river discharge and sediment concentration, floodplain topography, and the resulting water flow patterns during various discharge levels. In the investigated areas, the resulting annual average sedimentation rates varied between 0.5 mm/year and 4.0 mm/year. The role of the most important mechanisms governing the spatial patterns of overbank deposition, i.e. inundation frequency, sediment load, floodplain topography and its influence on the flow patterns over the floodplain, are discussed.  相似文献   

3.
The spatial heterogeneity of hydrology and vegetation during high-water periods in geomorphically distinct reaches of the Amazon River in Brazil was determined based on semivariance statistics. The spatial statistics were derived from three classified Landsat Thematic Mapper images representing upstream to downstream geomorphic characteristics. In the upstream river reach, scroll-bar topography on the floodplain tends to channelize floodwater into floodplain drainage channels, thus reducing the diversity of water types by reducing opportunities for mixing of flooding river water with locally derived floodplain water. The highest diversity of vegetation types is along floodplain drainage channels, while the rest of the floodplain has a more homogeneous cover. In the middle reach of the river the diversity of wetland classes as measured by semivariance is higher than both upstream and downstream, perhaps because of exposure to more water types and landforms. The diversity of water types is high, because flooding river water flows onto the floodplain as diffuse, non-channelized overbank flow, as well as through drainage channels. The non-channelized overbank flow readily mixes with locally derived floodplain water. Floodplain landforms available for colonization by vegetation include scroll bars, swales, lake shores, lake deltas, and floodplain drainage channels. In the downstream reach where the floodplain is wide, relatively flat, and covered with huge lakes, the floodplain supports a moderately heterogeneous mix of vegetation communities. Where landforms are similar, the spatial distribution of the vegetation is similar to that of the middle reach of the river. In the downstream reach flooded forest comprised only 37% of the wetland vegetation. In contrast, in both the upstream and middle reaches, over 70% of the wetland vegetation was flooded forest. Agricultural clearing of the floodplain is more. common in downstream reaches and may account for the smaller percent of floodplain forest cover.  相似文献   

4.
The “Ewijkse Plaat” is a floodplain along the Waal River, NL. In 1988, the floodplain was excavated as part of a program for enlargement of the discharge capacity and was assigned as a nature rehabilitation area. This paper describes the combined geomorphological and vegetation evolution of the floodplain until 16 years after the initial excavation using elevation data and data on vegetation structure derived from detailed aerial stereographic imagery. The impact of these processes on flow velocity and water surface elevation was evaluated by using a hydraulic model. Within 16 years, the excavated amount of sediment was redeposited in the area. The dominant geomorphological process after excavation was vertical accretion of the floodplain which resulted in the formation of natural levees. The amount of sedimentation was correlated to the across-floodplain flow (R2 = 0.89). In the research period, 41% of the sedimentation took place during two single major flood events. The creation of pioneer stages by excavation promoted softwood forest establishment, which influenced the sedimentation pattern significantly. The landscape evolved toward structure-rich vegetation. Nine years after excavation the initial hydraulic gain was lost by the combined effect of sedimentation and vegetation succession. Implications for river and nature management are discussed.  相似文献   

5.
In this paper we explore the development and assimilation of a high resolution topographic surface with a one-dimensional hydraulic model for investigation of avulsion hazard potential on a gravel-bed river. A detailed channel and floodplain digital terrain model (DTM) is created to define the geometry parameter required by the 1D hydraulic model HEC-RAS. The ability to extract dense and optimally located cross-sections is presented as a means to optimize HEC-RAS performance. A number of flood scenarios are then run in HEC-RAS to determine the inundation potential of modeled events, the post-processed output of which facilitates calculation of spatially explicit shear stress (τ) and level of geomorphic work (specific stream power per unit bed area, ω) for each of these. Further enhancing this scenario-based approach, the DTM is modified to simulate a large woody debris (LWD) jam and active-channel sediment aggradation to assess impact on innundation, τ, and ω, under previously modeled flow conditions. The high resolution DTM facilitates overlay and evaluation of modeled scenario results in a spatially explicit context containing considerable detail of hydrogeomorphic and other features influencing hydraulics (bars, secondary and scour channels, levees). This offers advantages for: (i) assessing the avulsion hazard potential and spatial distribution of other hydrologic and fluvial geomorphic processes; and (ii) exploration of the potential impacts of specific management strategies on the channel, including river restoration activities.  相似文献   

6.
The Stanley River in western Tasmania, Australia, contains sub-fossil rainforest logs within the channel and floodplain. Of the more than 85 radiocarbon dates obtained, all but 3 date from 17 ka to the present and permit an interpretation of fluvial and related environmental changes over this period. Particular attention is focused on the interactive relationship between the river and its riparian rainforest. Following the Last Glacial Maximum, the Stanley River was a laterally active gravel-load system reworking most of its valley floor in the upstream reaches. With ameliorating conditions at the end of the Pleistocene, climate became less seasonal and flow regimes less energetic. Huon pines already present in the catchment, re-asserted themselves in the form of dense tree cover along the river banks and floodplains with basal floodplain deposition shifting from gravels to coarse sands and granules. By about 3.5 ka, a further change in climate reduced stream discharges substantially. As a result the channel reduced in size, transported finer sediment, became laterally stable, and the floodplain accreted with overbank deposits of sand and silt. Huon pines falling into the channel formed obstructions of woody debris, some surviving for 2 ka. These have reduced stream power and boundary shear stress, further contributing to channel stability. Generational sequences of Huon pines on the river banks, some extending back 1–2 ka, are additional evidence of this stability. Since the Pleistocene, changing climate and the re-establishment of dense riparian rainforest appear to have stabilised the river channels and floodplains of western Tasmania.  相似文献   

7.
Lisa M. Fotherby   《Geomorphology》2009,103(4):562-576
The Platte River in Nebraska has evolved in the twentieth century from a predominantly braided river pattern to a mélange of meandering, wandering, anastomosed, island braided, and fully braided reaches. Identifying the factors that determine the occurrence of a fully braided main channel was the objective of this study. Aerial photography, gage flow data, ground-surveyed cross sections, bed material samples, and the results of sediment transport modeling were used to examine factors that control spatial change in main river pattern of the central Platte River. Valley confinement is identified as the determining factor of braided river in nine of eleven divisions of the central Platte River. Flow reduction and the interruption of sediment supply are identified as determining factors preventing fully braided river in the remaining two of eleven reaches.Valley confinement, the topography which limits the width of the floodplain, was initially measured as width between historical banks (predevelopment river banks). This metric was later refined to width between confining features (historical banks, remnant bars, bridge abutments, protected banks and levees). Under existing conditions, the main channel of the central Platte River is fully braided when valley confinement (width between confining features) is 600 m or less and begins to divide into the multiple channels of an anastomosed pattern when valley confinement (width between confining features) exceeds 600 m When Platte River flow is divided between two to four major anabranches, a fully braided pattern in the main channel of the main anabranch requires a more confined valley of 400 m or less.Valley confinement is demonstrated to be the dominant factor in determining river pattern in the central Platte River, although this factor is not normally considered in the continuum of channel pattern model. Conclusions from this study can be used to increase the occurrence of fully braided main channel in the central Platte River, to aid habitat recovery for endangered or threatened bird species that favor this river pattern. Consideration of valley confinement with river continuum factors can aid river managers by improving predictions of river pattern in response to management actions.  相似文献   

8.
The estimation of fluvial sediment transport rate from measurements of morphological change has received growing recent interest. The revival of the ‘morphological method’ reflects continuing concern over traditional methods of rate determination but also the availability of new survey methods capable of high-precision, high-resolution topographic monitoring. Remote sensing of river channels through aerial digital photogrammetry is a potentially attractive alternative to labour intensive ground surveys. However, while photogrammetry presents the opportunity to acquire survey data over large areas, data precision and accuracy, particularly in the vertical dimension are lower than in traditional ground survey methods. This paper presents results of recent research in which digital elevation models (DEMs) have been developed for a reach of a large braided gravel-bed river in Scotland using both digital photogrammetry and high-resolution RTK GPS ground surveys. A statistical level of change detection is assessed by comparing surfaces with independent check points. The methodological sensitivity of the annual channel sediment budget (1999–2000) to the threshold is presented. Results suggest that while the remote survey methods employed here can be used to develop qualitatively convincing, moderate precision DEMs of channel topography (RMSE=±0.21 m), the remaining errors imply significant limits on reliable change detection which lead to important information losses. Tests at a 95% confidence interval for change detection show that over 60% of channel deposition and 40% of erosion may be obscured by the lower level of precision associated with photogrammetric monitoring when compared to ground survey measurements. This bias reflects the difficulty of detecting the topographic signature of widespread, but shallow deposition on bar tops.  相似文献   

9.
An avulsion of the lower Saskatchewan River in the 1870s inundated a large segment of peat-covered floodplain that subsequently has become aggraded with a broad (500 km2) belt of alluvium deposited by the redirected flow. Routing of water and sediment discharge through the avulsion-affected area has been accomplished mainly by networks of sandy bedded anastomosed channels that have formed, evolved, and abandoned as the alluvial belt prograded down the floodplain slope. These processes continue today, though at a much-reduced rate. New channels, formed by crevassing and basinward extension of distributaries, are initially small and shallow, with bottom elevations situated within the avulsive alluvium but above the pre-avulsion peat (floodplain) surface. Subsequent enlargement and downcutting of many of these channels eventually uncovers the underlying peat layer whose resistance to erosion exerts significant influence on cross-sectional shape and further channel development. Peat-floored channels tend to have rectangular cross-sections, high ratios of average to maximum depth (D/Dmax), and a large range of width-to-depth ratios. If the channel continues to enlarge, the peat layer eventually becomes breached, commonly leading to temporarily irregular cross-sections caused by localized scouring at the breach sites. Eventually, the peat layer is completely eroded from the channel floor by undercutting and slumping, after which channel shape becomes governed mainly by other perimeter characteristics. Channels unaffected by peat, either before the peat layer is encountered during early channel development or after it is entirely removed, tend to have low width/depth ratios and a large range of D/Dmax values.  相似文献   

10.
The modelling of environmental processes based on catchment elevation surfaces is well-established, but the use of TIN and grid surface models as three-dimensional representations of river channel topography at the reach scale is much less common. In this paper, surface modelling facilities in ARC/INFO GIS have been used to model the geometry of seven short sections of gravel-bed river channels in upland Britain from field surveys taken in 1976 and 1994. The methods used in converting field survey data and implementing bed-topography models as TIN and grid data structures are described. The use of derived surface models to define pool-riffle bedforms, estimate sediment budgets and assess channel change between surfaces of different dates are discussed and evaluated.  相似文献   

11.
黄河游荡河段河床形态调整对洪水过程的响应   总被引:1,自引:1,他引:1  
以黄河流域1950~1985年200余场洪水资料为基础,并增加了最近的实验资料,分析了黄河下游游荡河段不同含沙量沙水过程中河床形态的调整过程,结果表明,由洪水过程所导致的河床形态变化是相当剧烈的。且与含沙量密切相关,表现出非线性的变化规律,当含沙量较小时,随含沙量的增大,洪水后河床宽深比增大,当含沙量增大到一定程度后再增大时,宽深比随含沙量的增大而减小,这一结果为修正Schumm关于河床形态变化的定性预测关系提供了新的依据。  相似文献   

12.
At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30 years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.  相似文献   

13.
渭河下游河道调整过程中的复杂响应现象   总被引:2,自引:1,他引:1  
许炯心 《地理研究》1989,8(2):82-90
应用系统复杂响应的原理研究三门峡水库上游渭河河道调整过程,表明上游河道河床形态对基面上升所作出的响应是复杂的,弯曲系数的变化为先减小而后增大,宽深比的变化是先增大后减小,比降由先减小而后增大,最后均趋于稳定.  相似文献   

14.
Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m.For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr.The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/10Be ratio that readily discloses the depth and duration of storage.We illustrate these models with examples from the Amazon basin. As predicted, modern bedload collected from an Amazon tributary, the Bolivian Beni River, shows no systematic change in nuclide concentration as sediment is moved through 500 km of floodplain by river meandering. In contrast, in the central Amazon floodplain currently untouched by the modern river system, low 26Al/10Be ratios account for minimum burial depths of 5 to 10 m for a duration of > 5 Myr.The important result of this analysis is that in all likely cases of active floodplains, cosmogenic 10Be and 26Al concentrations remain virtually unchanged over the interval sediment usually spends in the basin. Thus, spatially-averaged denudation rates of the sediment-producing area can be inferred throughout the entire basin, provided that nuclide production rates are scaled for the altitudes of the sediment-producing area only, because floodplain storage does not modify nuclide concentrations introduced from the sediment source area.  相似文献   

15.
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan–eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan–eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches.In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels.The process of channel narrowing varied between fan–eddy-dominated and meandering reaches. In the meandering reaches, where stream power has not changed, narrowing was accomplished by essentially the same depositional processes that operated prior to regulation. In fan–eddy-dominated reaches, where significant reductions in stream power have occurred, channel narrowing has been accompanied by a change in dominant depositional processes. Mid-channel sand deposits are aggrading on deposits that, in the pre-dam era, were active gravel bars. These deposits are creating new islands and decreasing the presence of open-framework gravel bars. In eddies, bare sand bars are replaced with vegetated bars that have a simpler topography than the pre-dam deposits.  相似文献   

16.
Terrace remnants are commonly used to reconstruct longitudinal profiles of rivers and floodplains, and to establish temporal correlations of events in fluvial systems. In most cases, it is assumed that the terrace remnants represent time-equivalent surfaces. Our observations of terrace formation in flume experiments and in a degrading braided river, Ash Creek, Arizona, suggest that this assumption is not always valid. Degradation resulted from a reduction in upstream sediment delivery to braided channels. In both the flume and Ash Creek, degradation in the upstream reach produced a number of inset terraces, while the production of sediment in the degrading reach simultaneously caused further aggradation downstream. Thus, stratigraphically lower surfaces in the upstream reaches are temporally equivalent to higher surfaces in downstream reaches. The downstream progression of the wave of incision produced more terraces upstream than downstream, and terrace surfaces could not be correlated on the basis of relative position or elevation above the channel bed. Furthermore, a physically continuous terrace tread was produced by longitudinal accretion of temporally non-equivalent depositional segments, as the locus of deposition progressed downstream. Therefore, in some instances, physically continuous terrace treads may not be time-equivalent surfaces that represent former channel bed or floodplain profiles. [Key words: terrace development, degradation, braided channels, channel pattern change.]  相似文献   

17.
Anabranching is characteristic of a number of rivers in diverse environmental settings worldwide, but has only infrequently been described from bedrock-influenced rivers. A prime example of a mixed bedrock-alluvial anabranching river is provided by a 150-km long reach of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Here, the perennial Orange flows through arid terrain consisting mainly of Precambrian granites and gneisses, and the river has preferentially eroded bedrock joints, fractures and foliations to form multiple channels which divide around numerous, large (up to 15 km long and 2 km wide), stable islands formed of alluvium and/or bedrock. Significant local variations in channel-bed gradient occur along the river, which strongly control anabranching style through an influence on local sediment budgets. In relatively long (>10 km), lower gradient reaches (<0.0013) within the anabranching reach, sediment supply exceeds local transport capacity, bedrock usually only crops out in channel beds, and channels divide around alluvial islands which are formed by accretion in the lee of bedrock outcrop or at the junction with ephemeral tributaries. Riparian vegetation probably plays a key role in the survival and growth of these islands by increasing flow roughness, inducing deposition, and stabilising the sediments. Less commonly, channels may form by eroding into once-continuous island or floodplain surfaces. In shorter (<10 km), higher gradient reaches (>0.0013) within the anabranching reach, local transport capacity exceeds sediment supply, bedrock crops out extensively, and channels flow over an irregular bedrock pavement or divide around rocky islands. Channel incision into bedrock probably occurs mainly by abrasion, with the general absence of boulder bedforms suggesting that hydraulic plucking is relatively unimportant in this setting. Mixed bedrock-alluvial anabranching also occurs in a number of other rivers worldwide, and appears to be a stable and often long-lived river pattern adjusted to a number of factors commonly acting in combination: (1) jointed/fractured granitoid rock outcrop; (2) erosion-resistant banks and islands; (3) locally variable channel-bed gradients; (4) variable flow regimes.  相似文献   

18.
Sediment supplied by continental sources is commonly suspected to have exerted a strong influence on the development of canyons and other morphological features on the continental slopes, but rarely is the sediment supply known sufficiently quantitatively to test this link. Here, we outline an area where offshore morphology, in the western Ionian Sea, may be linked to estimated sediment fluxes produced by subaerial erosion in NE Sicily and SW Calabria. Shelves in this area are narrow (<1 km), and the bathymetry shows that rivers and adjacent submarine channels are almost directly connected with each other. Integrated topographic analyses were performed on a merged digital elevation model (DEM) of ASTER data for subaerial topography and multibeam sonar data for submarine bathymetry. Spatial variations in sediment fluxes from onshore erosion were assessed using a variety of methods, namely: long‐term sediment flux from Pleistocene uplift rates, decadal sediment flux from landslide occurrences and published long‐term exhumation rates from 10Be cosmogenic nuclide concentrations. Submarine channels associated with rivers delivering larger sediment fluxes have broad channels, high relief and smooth concave‐upward longitudinal profiles. Conversely, submarine channels that lie offshore small‐flux rivers have straight longitudinal profiles, low relief and steep gradients. Where river catchments supply a greater sediment flux offshore, shelves tend to be wider (ca. 400 m) and submarine channels have gentler gradients. In contrast, where catchments supply less sediment flux, shelves are narrow (250–300 m) and offshore channel gradients are steeper. The variation of submarine morphology with tectonic uplift rate was also studied, but we find that, unlike onshore terrains where tectonics is commonly an important factor influencing channel morphology, in the submarine landscapes, sediment flux appears to dominate here.  相似文献   

19.
This study examines spatial variations in natural levee deposits within the lower reaches of a large coastal plain drainage system. The Pánuco basin (98,227 km2) drains east-central Mexico, and is an excellent setting to examine the influence of watershed and local controls on the morphology and sedimentology of natural levees. Although many fluvial systems in the U.S. Gulf Coastal Plain have been investigated, the rivers in the Mexican Gulf Coastal Plain have received comparatively little attention. Lateral and downstream characteristics of natural levee morphology and sediment texture are considered within the context of meandering river floodplain deposits. Data sources include total-stations surveying, sediment samples of surficial levee deposits, topographic maps (1:50,000), and aerial photographs (1:40,000). The slope of natural levees average 0.0049 m/m, whereas the texture (D84) of levee deposits averages 0.12 mm. Natural levee characteristics vary due to local- and watershed-scale controls. The lateral reduction in levee height displays a curvilinear pattern that coincides with an abrupt change in sediment texture. The downstream pattern of natural levee texture exhibits the influence of local-scale perturbations superimposed upon a larger watershed-scale trend. Disruption to the fining trend, either by tributary inputs of sediment or reworking of Tertiary valley deposits, is retained for a limited distance. The influence of the channel planform geometry on levee morphology is examined by consideration of the radius of curvature (Rc) of meander bends, and is inversely related to natural levee width. This suggests that the planform geometry of river channels exerts a control on the dispersal of flood sediments, and is responsible for considerable local variability in the floodplain topography. The average width of natural levees increases with drainage area, from an average of 747 m in the Moctezuma to an average of 894 m in the Pánuco. However, in the lower reaches of the Pánuco valley the width of natural levees rapidly decreases, which is associated with fining of the suspended sediment load. Thus, the reduction in natural levee width signifies an abrupt change in the directionality of cause–effect relationships at the watershed-scale. Findings from this study elucidate linkages between meandering river channels and floodplains for a large lowland alluvial valley.  相似文献   

20.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号