首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the origin and geomorphic evolution of Stillerust Vlei, a 189 ha wetland located approximately 150 km northwest of Durban in the temperate submontane foothills of the KwaZulu‐Natal Drakensberg Mountains. The investigation confirms the findings of previous research on the arid to semi‐arid South African interior, which established that many floodplain wetlands in eastern South Africa are located upstream of resistant rock barriers (dolerite intrusions) that cross river courses and form stable local base levels. Upstream of these barriers, rivers laterally plane less resistant Karoo sedimentary rocks (sandstones, mudstones), creating broad, low gradient valleys conducive to the formation of floodplain wetlands. In addition, the study examines how local levee and alluvial ridge accretion on the floodplain of Stillerust Vlei has impounded a small tributary valley, and drawing on observations of similar wetlands in the region, the paper explains the origin and geomorphic evolution of wetlands in floodplain‐abutting valleys, and associated streams that commonly become discontinuous toward their confluence with the trunk (floodplain) river. Controls on the origin and geomorphic evolution of Stillerust Vlei are placed within the context of slope‐channel decoupling and (dis)connectivity in sediment delivery, illustrating that wetlands are environments of deposition. As a result of dynamic trunk‐tributary relations, Stillerust Vlei holds a diversity of geomorphic features, and thus provides potential habitat for a diversity of biota. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Stratigraphy is a fundamental component of floodplain heterogeneity and hydraulic conductivity and connectivity of alluvial aquifers, which affect hydrologic processes such as groundwater flow and hyporheic exchange. Watershed-scale hydrological models commonly simplify the sedimentology and stratigraphy of floodplains, neglecting natural floodplain heterogeneity and anisotropy. This study, conducted in the upper reach of the East River in the East River Basin, Colorado, USA, combines point-, meander-, and floodplain-scale data to determine key features of alluvial aquifers important for estimating hydrologic processes. We compare stratigraphy of two meanders with disparate geometries to explore floodplain heterogeneity and connectivity controls on flow and transport. Meander shape, orientation, and internal stratigraphy affected residence time estimates of laterally exchanged hyporheic water. Although the two meanders share a sediment source, vegetation, and climate, their divergent river migration histories resulted in contrasting meander hydrofacies. In turn, the extent and orientation of these elements controlled the effective hydraulic conductivity and, ultimately, estimates of groundwater transport and hyporheic residence times. Additionally, the meanders’ orientation relative to the valley gradient impacted the hydraulic gradient across the meanders—a key control of groundwater velocity. Lastly, we combine our field data with remotely sensed data and introduce a potential approach to estimate key hydrostratigraphic packages across floodplains. Prospective applications include contaminant transport studies, hyporheic models, and watershed models. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Air photo interpretation and field survey were used to examine rates and patterns of planform change over the last 40 years on an 80 km reach of the Luangwa River, Zambia. The river, a tributary of the Zambezi, is a 100–200 m wide, medium sinuosity sand‐bed river (sinuosity index 1·84). High rates of channel migration (<33 m a−1) and cutoffs on meandering sections are frequent. Some meandering reaches, however, have remained relatively stable. A form of anastomosing with anabranches up to 14 km in length is also a characteristic. Patterns of meander development vary between bends but all can be described in relation to traditional geomorphic models; change occurs by translation, rotation, double‐heading, concave bank bench formation and cutoff causing river realignment. At the local scale spatial variability in bank resistance, induced by floodplain sedimentology, controls rate of bank erosion, and valley‐side channel ‘deflection’ is also apparent. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This study examined the temporal dynamics and longitudinal distribution of wood over a multi‐decadal timescale at the river reach scale (36 km) and a meander bend scale (300–600 m) in the Ain River, a large gravel‐bed river flowing through a forested corridor, and adjusting to regulation and floodplain land‐use change. At the 36 km scale, more wood was recruited by bank erosion in 1991–2000 than since the 1950s. The longitudinal distribution of accumulations was similar between 1989 and 1999, but in both years individual pieces occurred homogeneously throughout the reach, while jam distribution was localized, associated with large concave banks. A relationship between the mean number of pieces and the volume recruited by bank erosion (r2 = 0·97) indicated a spatial relationship between areas of wood production and storage. Wood mass stored and produced and channel sinuosity increased from 1993 to 2004 at three meander bends. Sinuosity was related to wood mass recruited by bank erosion during the previous decade (r2 = 0·73) and both of these parameters were correlated to the mean mass of wood/plot (r2 = 0·98 and 0·69 respectively), appearing to control wood storage and delivery at the bend scale. This suggests a local origin of wood stored in channel, not input from upstream trapped by preferential sites. The increase in wood since 1950 is a response to floodplain afforestation, to a change from braided to meandering channel pattern in response to regulation, and to recent large floods. We observed temporal stability of supply and depositional sectors over a decade (on a reach scale). Meander bends were major storage sites, trapping wood with concave banks, also delivering wood. These results, and the link between sinuosity and wood frequency, establish geomorphology as a dominant wood storage and recruitment control in large gravel‐bed rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Prior to European settlement, the Upper Hunter River near Muswellbrook, New South Wales, was a passively meandering gravel‐bed river of moderate sinuosity and relatively uniform channel width. Analyses of floodplain sedimentology, archival records, parish maps and aerial photographs document marked spatial variability in the pattern of channel change since European settlement in the 1820s. Different types, rates and extents of change are reported for seven zones of adjustment along an 8 km study reach. This variable adjustment reflects imposed antecedent controls (buried terrace material and bedrock), which have significantly influenced local variability in river sensitivity to change, as well as contemporary morphodynamics and geomorphic complexity. Local variability in system responses to disturbance has important implications for future river management and rehabilitation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Since the end of the post‐glacial sea level rise 6800 years ago, progradation of river mouths into estuaries has been a global phenomenon. The responses of upstream alluvial river reaches to this progradation have received little attention. Here, the links between river mouth progradation and Holocene valley aggradation are examined for the Macdonald and Tuross Rivers in south‐eastern Australia. Optical and radiocarbon dating of floodplain sediments indicates that since the mid‐Holocene sea level highstand 6800 years ago vertical floodplain aggradation along the two valleys has generally been consistent with the rate at which each river prograded into its estuary. This link between river mouth progradation and alluvial aggradation drove floodplain aggradation for many tens of kilometres upstream of the estuarine limits. Both rivers have abandoned their main Holocene floodplains over the last 2000 years and their channels have contracted. A regional shift to smaller floods is inferred to be responsible for this change, though a greater relative sea level fall experienced by the Macdonald River since the mid‐Holocene sea level highstand appears to have been an additional influence upon floodplain evolution in this valley. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The evolution of meandering river floodplains is predominantly controlled by the interplay between overbank sedimentation and channel migration. The resulting spatial heterogeneity in floodplain deposits leads to variability in bank erodibility, which in turn influences channel migration and planform development. Despite the potential significance of these feedbacks, few studies have quantified their impact upon channel evolution and floodplain construction in dynamic settings (e.g. locations characterized by rapid channel migration and high rates of overbank sedimentation). This study employs a combination of field observations, geographic information system (GIS) analysis of satellite imagery and numerical modelling to investigate these issues along a 375 km reach of the Rio Beni in the Bolivian Amazon. Results demonstrate that the occurrence of clay‐rich floodplain deposits promotes a significant reduction in channel migration rates and distinctive styles of channel evolution, including channel straightening and immobilization of bend apices leading to channel narrowing. Clay bodies act as stable locations limiting the propagation of planform disturbances in both upstream and downstream directions, and operate as ‘hinge’ points, around which the channel migrates. Spatial variations in the erodibility of clay‐rich floodplain material also promote large‐scale (10–50 km) differences in channel sinuosity and migration, although these variables are also likely to be influenced by channel gradient and tectonic effects that are difficult to quantify. Numerical model results suggest that spatial heterogeneity in bank erodibility, driven by variable bank composition, may force a substantial (c. 30%) reduction in average channel sinuosity, compared to situations in which bank strength is spatially homogeneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Short-term instability in the behaviour of a small, meandering alluvial channel is identified from the relation between sinuosity and either floodplain slope or channel slope within 17 reaches along an 81-kilometre section of the Belle Fourche River in western South Dakota. In reaches 1 to 4 and 11 to 17 the channel is relatively stable and sinuosity varies inversely with channel slope. In reaches 5 to 10, sinuosity is positively related to floodplain slope. Sinuosity increases markedly in reaches 5, 6, and 7 (which are immediately downstream from a discontinuity in the long profile of the floodplain) in association with an increase in floodplain slope. Immediately upstream from the discontinuity, bankfull channel depth and sinuosity decrease and the area of the floodplain reworked by meander migration between 1939 and 1981 increases, in association with a decrease in floodplain slope. Channel behaviour in reaches 5 to 10 is best explained as a consequence of neotectonic activity, as indicated by changes in elevation recorded along geodetic survey lines that cross lineaments that may delimit the eastern boundary of the Black Hills uplift. Sinuosity acts as a barometer of the effects of neotectonic activity on alluvial channels. Initial indications of channel and floodplain instability due to neotectonic activity may be derived from evidence of anomalously active channel migration, as documented from photographic or topographic sources.  相似文献   

11.
We draw on published studies of floodplain organic carbon storage, wildfire-related effects on floodplains in temperate and high latitudes, and case studies to propose a conceptual model of the effects of wildfire on floodplain organic carbon storage in relation to climate and valley geometry. Soil organic carbon typically constitutes the largest carbon stock in floodplains in fire-prone regions, although downed wood can contain significant organic carbon. We focus on the influence of wildfire on soil organic carbon and downed wood as opposed to standing vegetation to emphasize the geomorphic influences resulting from wildfire on floodplain organic carbon stocks. The net effect of wildfire varies depending on site-specific characteristics including climate and valley geometry. Wildfire is likely to reduce carbon stock in steep, confined valley segments because increased water and sediment yields following fire create net floodplain erosion. The net effect of fire in partly confined valleys depends on site-specific interactions among floodplain aggradation and erosion, and, in high-latitude regions, permafrost degradation. In unconfined valleys in temperate latitudes, wildfire is likely to slightly increase floodplain organic carbon stock as a result of floodplain aggradation and wood deposition. In unconfined valleys in high latitudes underlain by permafrost, wildfire is likely in the short-term to significantly decrease floodplain organic carbon via permafrost degradation and reduce organic-layer thickness. Permafrost degradation reduces floodplain erosional resistance, leading to enhanced stream bank erosion and greater carbon fluxes into channels. The implications of warming climate and increased wildfires for floodplain organic carbon stock thus vary. Increasing wildfire extent, frequency, and severity may result in significant redistribution of organic carbon from floodplains to the atmosphere via combustion in all environments examined here, as well as redistribution from upper to lower portions of watersheds in the temperate zone and from floodplains to the oceans via riverine transport in the high-latitudes. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Variations in floodplain channel water levels and valley floor groundwater levels (measured in piezometers and boreholes) are examined at selected points along the course of the River Lambourn, a chalk river in southern England. A local alluvial gravel aquifer in the valley bottom is associated with numerous small wetlands that extend over much of the river's perennial profile. Variations in hydraulic gradient between local borehole levels and/or floodplain channel water levels are described for three sites in the seasonal section of the channel at Bockhampton, East Garston and West Shefford. The results indicate that observed groundwater levels are closely associated with flows from discrete springs at the margins of the channel and floodplain. However, as the floodplain widens and the alluvial gravel aquifer increases in size, the gravel aquifer accounts for a substantial down-valley component of groundwater flow with a diffuse vertical water flux. In the lower catchment, the exchange of flows between the gravel aquifer and the river enables some attenuation of floodplain water-table variability, providing a stable hydrological regime for valley-bottom wetlands. Catchment controls upon the local, valley-bottom, wetland regime are demonstrated with the application of a simple groundwater model developed using MODFLOW. The model is used to simulate groundwater discharge to the river in the upper and lower catchment, in addition to the water level regime at selected points in the valley bottom in the lower catchment. The results demonstrate the importance of taking catchment-scale water flow into account when managing isolated wetlands in a permeable catchment.  相似文献   

13.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

14.
For 2 years, water flow‐patterns in the Garonne floodplain of south‐western France were studied in the field and through hydrodynamic modelling (MARTHE Hydrodynamic Software developed by BRGM). Water flow‐paths and the transport of dissolved elements between river and aquifer have been investigated and modelled. In order to quantify the buffer function of the alluvial floodplain, we focused our work on the effect of a major flood on the water flow‐direction, and on nitrate transport. Thus, we showed that the effect of a large flood in the river was rapidly lost with increasing distance from the river. During the observation period, a hydrologically active strip only 300 m wide on either side of the riverbed played a buffering role in absorbing the flood crest. It was also found that meanders favour the exchange between river and alluvial aquifer, shown by the creation of bypasses between the upstream and downstream parts of meanders. This, in turn, contributes to a dilution of nitrates in the phreatic aquifer, which here has higher nitrate content than the surface water; such dilution may result in an overestimation of the denitrification process in the wooded riverbanks. The coupling of chemical measurements—especially of chlorides and nitrate—with modelling of the dissolved‐element transport allows us to establish the water balance for the riparian wetland, and to separate the effect of dilution and denitrification on nitrate concentration. This indicated the existence of areas in the riparian wetlands where denitrification is particularly strong, leading to reductions in nitrate concentrations of 10 to 30 mg/l NO3? during the flood. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Low‐energy streams in peatlands often have a high sinuosity. However, it is unknown how this sinuous planform formed, since lateral migration of the channel is hindered by relatively erosion‐resistant banks. We present a conceptual model of Holocene morphodynamic evolution of a stream in a peat‐filled valley, based on a palaeohydrological reconstruction. Coring, ground‐penetrating radar (GPR) data, and 14C and OSL dating were used for the reconstruction. We found that the stream planform is partly inherited from the Late‐Glacial topography, reflecting stream morphology prior to peat growth in the valley. Most importantly, we show that aggrading streams in a peat‐filled valley combine vertical aggradation with lateral displacement caused by attraction to the sandy valley sides, which are more erodible than the co‐evally aggrading valley‐fill. Owing to this oblique aggradation in combination with floodplain widening, the stream becomes stretched out as channel reaches may alternately aggrade along opposed valley sides, resulting in increased sinuosity over time. Hence, highly sinuous planforms can form in peat‐filled valleys without the traditional morphodynamics of alluvial bed lateral migration. Improved understanding of the evolution of streams provides inspiration for stream restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The Andean Cordillera and piedmont significantly influence river system and dynamics, being the source of many of the important rivers of the Amazon basin. The Beni River, whose upper sub‐catchments drain the Andean and sub‐Andean ranges, is a major tributary of the Madeira River. This study examines the river in the south‐western Amazonian lowlands of Bolivia, where it develops mobile meanders. Channel migration, meander‐bend morphology and ox‐bow lakes are analysed at different temporal and spatial scales. The first part of this study was undertaken with the aim to link the erosion–deposition processes in the active channel with hydrological events. The quantification of annual erosion and deposition areas shows high inter‐annual and spatial variability. In this study, we investigate the conditions of sediment exportation in the river in relation to three hydrological parameters (flood intensity, date of discharge peak and duration of the bank‐full stage level). The second part of this study, focusing on the abandoned meanders, analyses the cutoff processes and the post‐abandonment evolution during 1967–2001. This approach shows the influence of the active channel behaviour on the sediment diffusion and sequestration of the abandoned meanders and allows us to build a first model of the contemporary floodplain evolution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The 1300 km long Narmada River flows along a structural lineament, alternating between constricting rocky gorges and rapids, and meandering wide alluvial reaches. Channel forms and processes were studied in a 120 km long section of an alluvial reach. Channel size, shape and bedforms in the Narmada River are related to very large floods which have occurred three times in this century. During such floods the entire 400 m wide channel is utilized and 10–15 m high cliffs on both sides operate as riverbanks. Normally, even the high flows of the south-western monsoon are insufficient to fill the whole channel, and hence their effects are limited to building of discontinuous floodplains between the cliffs and modifying bedforms and bars. A channel-in-channel topography is thus created. The very large floods are also responsible for erosion of the rocky stretches and building of point bars. The river meanders, but its movement is restricted because of (1) rocky gorges and scablands operating as anchor points at intervals, and (2) the presence of high alluvial cliffs which are topped on extremely rare occasions. In spite of being located in a tectonically active zone in a monsoon setting, it is the exceptional high-magnitude floods at irregular intervals which control the form and behaviour of the Narmada River.  相似文献   

18.
Recent studies of sediment delivery and budgets in the United States indicate that upland erosion rates at a given time may not explain contemporaneous sediment yields from a drainage basin. This suggests temporal discontinuities in sediment delivery associated with hillslope and channel storage processes. Integration of sediment production, storage and transport is essential to understand sediment routing in basins. We analysed each process chronologically using aerial photographs, monitoring data of sediment movement and annual tree-rings, and then compared estimated temporal changes in sediment production from hillslopes, floodplain disturbance areas and sediment transport in river channels. Toeslopes, floodplains and alluvial fans together contained 59 per cent of sediment eroded from uplands over the last 30 years. Monitoring results of riverbed changes showed that the volume of stored sediment on floodplains decreased exponentially with succeeding floods. The age distribution of floodplain deposits reflected the disturbance history of a river channel, and followed an exponential decrease with age. The results of this study may have important implications for sediment control plans for watersheds in steep regions.  相似文献   

19.
Cosmogenic 10Be concentrations in exposed bedrock surfaces and alluvial sediment in the northern Flinders Ranges reveal surprisingly high erosion rates for a supposedly ancient and stable landscape. Bedrock erosion rates increase with decreasing elevation in the Yudnamutana Catchment, from summit surfaces (13·96 ± 1·29 and 14·38 ± 1·40 m Myr?1), to hillslopes (17·61 ± 2·21 to 29·24 ± 4·38 m Myr?1), to valley bottoms (53·19 ± 7·26 to 227·95 ± 21·39 m Myr?1), indicating late Quaternary increases to topographic relief. Minimum cliff retreat rates (9·30 ± 3·60 to 24·54 ± 8·53 m Myr?1) indicate that even the most resistant parts of cliff faces have undergone significant late Quaternary erosion. However, erosion rates from visibly weathered and varnished tors protruding from steep bedrock hillslopes (4·17 ± 0·42 to 14·00 ± 1·97 m Myr?1) indicate that bedrock may locally weather at rates equivalent to, or even slower than, summit surfaces. 10Be concentrations in contemporary alluvial sediment indicate catchment‐averaged erosion at a rate dominated by more rapid erosion (22·79 ± 2·78 m Myr?1), consistent with an average rate from individual hillslope point measurements. Late Cenozoic relief production in the Yudnamutana Catchment resulted from (1) tectonic uplift at rates of 30–160 m Myr?1 due to range‐front reverse faulting, which maintained steep river gradients and uplifted summit surfaces, and (2) climate change, which episodically increased both in situ bedrock weathering rates and frequency–magnitude distributions of large magnitude floods, leading to increased incision rates. These results provide quantitative evidence that the Australian landscape is, in places, considerably more dynamic than commonly perceived. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Floodplains and terraces in river valleys play important roles in the transport dynamics of water and sediment. While flat areas in river valleys can be identified from LiDAR data, directly characterizing them as either floodplain or terraces is not yet possible. To address this challenge, we hypothesize that, since geomorphic features are strongly coupled to hydrological and hydraulic dynamics and their associated variability, there exists a return frequency, or possibly a narrow band of return frequencies, of flow that is associated with floodplain formation; and this association can provide a distinctive signature for distinguishing them from terraces. Based on this hypothesis we develop a novel approach for distinguishing between floodplains and terraces that involves transforming the transverse cross‐sectional geometry of a river valley into a curve, named a river valley hypsometric (RVH) curve, and linking hydraulic inundation frequency with the features of this curve. Our approach establishes that the demarcation between floodplains and terraces can be established from the structure of steps and risers in the RVH curves which can be obtained from the DEM data. Further, it shows that these transitions may themselves be shaped by floods with 10‐ to 100‐year recurrence. We additionally show that, when floodplain width and height (above channel bottom) are normalized by bankfull width and depth, the ratio lies in a narrow range independent of the scale of the river valley. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号