首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A semi-active tuned mass damper (TMD) which is capable of adjusting initial displacement and damping is applied to seismic protection of structures. Control algorithms are derived in closed forms using perturbation analysis on modal properties of the single degree of freedom (SDOF) structure/TMD system. Because perturbation solutions are given in a relatively simple form, the control algorithms are developed in a physically intuitive manner. In the first half of the paper, the control algorithms are introduced using numerical simulations of the impulse response. Then the algorithms are applied to seismic protection of civil structures using the strategy of multiple releasing and capturing of TMDs. The control strategy for seismic control is summarized in a flow chart. Numerical studies with the El Centro earthquake record show that the proposed semi-active method has higher performance than conventional passive TMDs.  相似文献   

2.
In this paper, the performance of active interaction control (AIC) algorithms is assessed within the context of two realistic building models. The AIC control approach is proposed as a semi‐active means of mitigating the structural response during large earthquakes. To implement the AIC control algorithms into MDOF systems, the modal control (MC) approach that directs the control effort to certain dominant response modes is formulated and utilized herein. Two structures, a 3‐storey building and a 9‐storey steel‐framed benchmark building controlled by the AIC algorithms are analysed for two historical earthquake records. The results of numerical simulation verify the efficacy of the AIC control algorithms in controlling vibration of building structures during large earthquakes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This paper proposes a non-linear control law for a variable damping device (VDD) aimed at reducing structural seismic responses. The VDD is attached to the structure by an auxiliary spring element composing a non-linear Maxwell element. The VDD's damping coefficient is adjusted to control the reactive internal force in the non-linear Maxwell element. A large controlled force is thus produced with little external power required to adjust the VDD's damping coefficient. The proposed control law defines the rate or increment of the VDD's damping coefficient at a certain moment by a differential equation or its discretized form. The controlled force vs. deformation relation plots parallelogram-like hysteretic curves, which indicates quick action and energy dissipation. Fundamental characteristics of an SDOF model with the VDD controlled by the proposed law are examined for impulse, sin and seismic excitations. The law for the SDOF model is extended to one for an MDOF model. The control effect for a 3DOF model is examined by numerical experiments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
A computational method of energy evaluation is derived to study the elastic responses and energy distribution of actively controlled single‐degree‐of‐freedom (SDOF) structures during earthquakes. Contrary to the common perception that applying active control force pumps energy into the structure, the applied control force can actually reduce the energy in the structure by reducing the input energy from earthquakes to the structure. In addition, applying control force can dissipate a large amount of energy in the structure when this control force is applied in the direction opposite to the displacement and velocity responses. To demonstrate this energy mechanism in active controlled structures, the two most popular control algorithms, optimal linear control (OLC) and instantaneous optimal control (IOC) algorithms, are used to calculate the control response and energy spectra. One‐step time delay is incorporated into the algorithms to take into consideration the practical aspect of active control. The effects of different earthquakes and damping ratios on control energy and response spectra are studied. These studies show that both OLC and IOC are very effective in reducing the structural displacement and velocity responses by reducing the input earthquake energy as well as dissipating a large amount of energy in the structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Evaluation of FEMA-440 for including soil-structure interaction   总被引:1,自引:1,他引:0  
Replacing the entire soil-structure system with a fixed base oscillator to consider the effect of soil-structure interaction (SSI) is a common analysis method in seismic design. This technique has been included in design procedures such as NEHRP, ASCE, etc. by defining an equivalent fundamental period and damping ratio that can modify the response of the structure. However, recent studies indicate that the effects of SSI should be reconsidered when a structure undergoes a nonlinear displacement demand. In recent documents on Nonlinear Static Procedures (NSPs), FEMA-440 (2005), a modified damping ratio of the replacement oscillator was proposed by introducing the ductility of the soil-structure system obtained from pushover analysis. In this paper, the damping defined in FEMA-440 to include the soil-structure interaction effect is evaluated, and the accuracy of the Coefficient Method given in FEMA-440 and the Equivalent Linearization Method is studied. Although the improvements for Nonlinear Static Procedures (NSPs) in FEMA-440 are achieved for a fixed base SDOF structure, the soil effects are not perfectly obtained. Furthermore, the damping definition of a soil-structure system is extended to structures to consider bilinear behavior.  相似文献   

8.
本文通过Maxwell模型模拟的黏滞阻尼器连接的2种不同相邻结构的地震反应分析,对阻尼器设置的位置和阻尼参数进行了同时优化。在El Centro波、Tianjin波和Taft波3种较典型的地震动作用下,分别对不同质量比和不同刚度比的主、子结构在无阻尼和有阻尼情况下进行了地震反应分析,并以主结构的顶层最大相对位移最小作为优化目标,寻求出最优的阻尼器摆放位置以及对应的最优阻尼系数。结果显示,当阻尼器选择合适的安放位置和合理的阻尼参数时,主、子结构的地震反应都会有一定程度的降低,从而收到较好的减震效果。  相似文献   

9.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested. This new system amplifies the structural displacement to dissipate more energy, and in turn, effectively reduces the structural response in the case of relatively small story drifts, which occur during earthquakes. A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted. From the experimental and analytical results, it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response, requires less energy input, operates with higher reliability, and can be manufactured at a lower cost and used in a wider range of engineering applications.  相似文献   

11.
变阻尼半主动结构控制振动台试验   总被引:5,自引:1,他引:4  
在一个1:4的五层模型刚架结构上进行了变阻尼半主动结构控制振动台试验.在结构的底层安装了一个溢流阀式变阻尼控制器,输入几种不同的地震动并采用几种不同的控制算法对结构进行了变阻尼半主动控制。振动台试验结果表明,受阻尼半主动结构控制仅需要很少的电能,就可以达到较好的控制效果,是一种很有应用前景的结构振动控制方案。结合溢流阀式变阻尼控制器的特点,分析了一些因素对控制效果的影响.  相似文献   

12.
The authors developed a semi‐active hydraulic damper (SHD) and installed it in an actual building in 1998. This was the first application of a semi‐active structural control system that can control a building's response in a large earthquake by continuously changing the device's damping coefficient. A forced vibration test was carried out by an exciter with a maximum force of 100 kN to investigate the building's vibration characteristics and to determine the system's performance. As a result, the primary resonance frequency and the damping ratio of a building that the SHDs were not jointed to, decreased as the exciting force increased due to the influence of non‐linear members such as PC curtain walls. The equivalent damping ratio was estimated by approximating the resonance curves using the steady‐state response of the SDOF bilinear hysteretic system. After the eight SHDs were jointed to the building, the system's performance was identified by a response control test for steady‐state vibration. The elements that composed the semi‐active damper system demonstrated the specified performance and the whole system operated well. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Generally, the active structural control system belongs to the discrete‐time control system, and the sampling period is one of the most important factors that would directly affect the performance of the control system. In this paper, active control approaches by using the discrete‐time variable structure control theory are studied for reducing the dynamic responses of seismically excited building structures. Based on the discrete reaching law method, a feedback controller which includes the sampling period is presented. The controller is extended by introducing the saturated control method to avoid the adverse effect when the actuators are saturated due to unexpected extreme earthquakes. The simulation results are obtained for a single‐degree‐of‐freedom (SDOF) system and a MDOF shear building equipped with active brace system (ABS) under seismic excitations. It is found that the discrete variable structure control approach and its saturated control method presented in this paper are quite effective. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

15.
在不同频率特征的地震动作用下,三维隔震单层球面网壳结构隔震层最优阻尼设计不同.文中基于单自由度体系加速度传递率函数,提出一种地震动主频相关的加速度阈值变阻尼半主动控制方法以及地震动主频分区识别方法.基于ABAQUS软件的DLOAD子程序,开展了三维隔震单层球面网壳被动控制与半主动控制有限元计算,对节点加速度、杆件轴力进...  相似文献   

16.
This research work focuses on the analysis of the hysteretic seismic behaviour of inelastic SDOF systems equipped with viscous dampers. In detail, it is aimed at obtaining a practical tool useful for the seismic design of building structures with added dampers, within the framework of the traditional seismic design based on ductility. The objective is to evaluate the appropriate force reduction factor for highly damped (i.e. damping ratio greater than 5 %) SDOF systems able to guarantee a prescribed level of structural safety.  相似文献   

17.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
工程结构等延性地震抗力谱研究   总被引:28,自引:7,他引:21  
研究结构的非弹性反应谱对改进现有的结构抗震设计、发展基于性态的抗震设计以及了解复杂地面运动特性与结构动力特性之间的关系具有重要的意义。利用大量的单自由度在强震记录作用下的弹塑性动力时程分析,对等延性地震抗力谱这一重要的非弹性反应谱进行了较为详尽的研究,给出了四类场地条件(基岩、硬土、一般土和软土)下的平均等延性地震抗力谱,总结了对工程结构的抗震设计和研究具有实际意义的规律和特征,并分析了场地条件、结构的延性系数以及周期等对等延性地震抗力谱的影响,提出了新的拟合公式,其成果可供抗震研究和设计直接应用。  相似文献   

19.
二次结构常常在大震甚至中小地震中发生损坏或中断工作,急需寻找安全有效的设计方法。对一幢典型结构,考虑不同场地条件、主体结构隔震以及二次结构不同阻尼比的影响,计算各层的楼面绝对加速度与相对位移反应谱。分析表明,主体结构隔震或同时增大二次结构阻尼是取得二次结构较好减振效果的有效途径,主体结构的隔震阻尼不宜太大,主体结构隔震后二次结构对所在楼层位置的敏感性大大降低。  相似文献   

20.
The determination of displacement demands for masonry buildings subjected to seismic action is a key issue in the performance-based assessment and design of such structures. A technique for the definition of single-degree-of-freedom (SDOF) nonlinear systems that approximates the global behaviour of multi-degree-of-freedom (MDOF) 3D structural models has been developed in order to provide useful information on the dependency of displacement demand on different seismic intensity measures. The definition of SDOF system properties is based on the dynamic equivalence of the elastic properties (vibration period and viscous damping) and on the comparability with nonlinear hysteretic behaviour obtained by cyclic pushover analysis on MDOF models. The MDOF systems are based on a nonlinear macroelement model that is able to reproduce the in-plane shear and flexural cyclic behaviour of pier and spandrel elements. For the complete MDOF models an equivalent frame modelling technique was used. The equivalent SDOF system was modelled using a suitable nonlinear spring comprised of two macroelements in parallel. This allows for a simple calibration of the hysteretic response of the SDOF by suitably proportioning the contributions of flexure-dominated and shear-dominated responses. The comparison of results in terms of maximum displacements obtained for the SDOF and MDOF systems demonstrates the feasibility and reliability of the proposed approach. The comparisons between MDOF and equivalent SDOF systems, carried out for several building prototypes, were based on the results of time-history analyses performed with a large database of natural records covering a wide range of magnitude, distance and local soil conditions. The use of unscaled natural accelerograms allowed the displacement demand to be expressed as a function of different ground motion parameters allowing for the study of their relative influence on the displacement demand for masonry structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号