首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this paper was to propose a design guideline for using visco‐elastic dampers for the control of building structures subjected to earthquake loading as well as suspension roof structures subjected to wind loading. The active control algorithm was used to calculate the control forces. Based on the single‐mode approach the control forces were transformed to the forces which visco‐elastic dampers can provide. Application of the method to the design of the building structure with passive damping devices in the bracing system and to the suspension roof with dampers was studied. Through the application of optimal control theory a systematic design procedure to implement dampers in structures is proposed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A series of large‐scale dynamic tests was conducted on a passively controlled five‐story steel building on the E‐Defense shaking table facility in Japan to accumulate knowledge of realistic seismic behavior of passively controlled structures. The specimen was tested by repeatedly inserting and replacing each of four damper types, that is, the buckling restrained braces, viscous dampers, oil dampers, and viscoelastic dampers. Finally, the bare steel moment frame was tested after removing all dampers. A variety of excitations was applied to the specimen, including white noise, various levels of seismic motion, and shaker excitation. System identification was implemented to extract dynamic properties of the specimen from the recorded floor acceleration data. Damping characteristics of the specimen were identified. In addition, simplified estimations of the supplemental damping ratios provided by added dampers were presented to provide insight into understanding the damping characteristics of the specimen. It is shown that damping ratios for the specimen equipped with velocity‐dependent dampers decreased obviously with the increasing order of modes, exhibiting frequency dependency. Damping ratios for the specimen equipped with oil and viscoelastic dampers remained constant regardless of vibration amplitudes, whereas those for the specimen equipped with viscous dampers increased obviously with an increase in vibration amplitudes because of the viscosity nonlinearity of the dampers. In very small‐amplitude vibrations, viscous and oil dampers provided much lower supplemental damping than the standard, whereas viscoelastic dampers could be very efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Supplemental damping is known as an efficient and practical means to improve seismic response of building structures. Presented in this paper is a mixed‐integer programming approach to find the optimal placement of supplemental dampers in a given shear building model. The damping coefficients of dampers are treated as discrete design variables. It is shown that a minimization problem of the sum of the transfer function amplitudes of the interstory drifts can be formulated as a mixed‐integer second‐order cone programming problem. The global optimal solution of the optimization problem is then found by using a solver based on a branch‐and‐cut algorithm. Two numerical examples in literature are solved with discrete design variables. In one of these examples, the proposed method finds a better solution than an existing method in literature developed for the continuous optimal damper placement problem. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The implementation of viscous dampers to microelectronics factories has been previously proved not to affect the micro‐vibration of the factories in operation so that the vibration‐sensitive manufacturing process will not be interfered. Therefore, a seismic retrofit strategy which employs the viscous dampers installed in between the exterior and interior structures of the ‘fab’ structure is proposed in the study. The design formulas corresponding to the proposed retrofit method are derived using the non‐proportional damping theory. Based on the study, it is found that the added damping ratio to the fab structure depends greatly on the frequency ratio of the two structures in addition to the damping coefficients of the added dampers. Outside the bandwidth of the frequency ratio in which the added damping ratio is very sensitive to the variation of the frequency ratio, the added damping ratio can be well captured using the classical damping theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Knowledge of maximum velocity is essential for the design of structures and especially those with supplementary dampers. Although the nonlinear time history analysis leads to reliable estimation of actual velocities, it seems to be complicated for the everyday engineering practice due to the increased computational cost. This paper proposes an alternative for single‐degree‐of‐freedom (SDOF) systems to estimate the actual velocity in a straightforward and effective manner. More specifically, this study examines the inelastic velocity ratio (IVR), i.e., the ratio of the maximum inelastic to the maximum elastic velocity of an SDOF system, the knowledge of which allows the computation of maximum inelastic velocity directly from the corresponding elastic counterpart. The proposed method is general and can be applied to both conventional structures and structures with supplementary dampers. Extensive parametric studies are conducted to obtain expressions for IVR in terms of the period of vibration, viscous damping ratio, force reduction factor, and soil class. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an energy‐based theoretical model for a two degree‐of‐freedom mechanical system. After a general formulation in Appendix A, the model is specialized to study tuned mass dampers as a means to substantially increase modal damping in order to induce a consequential decrease of the seismic response of the structures thus provided. Although approximate since it neglects coupling due to damping, it is shown that the model yields a first‐order approximation to the exact frequencies, providing values of optimum damping that closely match exact results proposed by others. In view of this, it is proposed that the model be applied through an iterative numerical procedure that identifies the pertinent optimum parameters. It is also shown that for certain particular benchmark cases the model provides closed‐form equations for the parameters defining the dynamic states related to these special conditions. Despite its approximate nature the model presented in this paper is rational, and due to its explicit consideration of energy balance and overall simplicity, it provides a convenient platform for the study of tuned mass dampers, as well as for other methods of structural passive control. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Magneto‐rheological (MR) dampers are a promising device for seismic hazard mitigation because their damping characteristics can be varied adaptively using an appropriate control law. During the last few decades researchers have investigated the behavior of MR dampers and semi‐active control laws associated with these types of dampers for earthquake hazard mitigation. A majority of this research has involved small‐scale MR dampers. To investigate the dynamic behavior of a large‐scale MR damper, characterization tests were conducted at the Lehigh Network for Earthquake Engineering Simulation equipment site on large‐scale MR dampers. A new MR damper model, called the Maxwell Nonlinear Slider (MNS) model, is developed based on the characterization tests and is reported in this paper. The MNS model can independently describe the pre‐yield and post‐yield behavior of an MR damper, which makes it easy to identify the model parameters. The MNS model utilizes Hershel–Bulkley visco‐plasticity to describe the post‐yield non‐Newtonian fluid behavior, that is, shear thinning and thickening behavior, of the MR fluid that occurs in the dampers. The predicted response of a large‐scale damper from the MNS model along with that from existing Bouc–Wen and hyperbolic tangent models, are compared with measured response from various experiments. The comparisons show that the MNS model achieves better accuracy than the existing models in predicting damper response under cyclic loading. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
阻尼器是一种效果良好的减震装置,将阻尼器安装于结构中能够适时为结构体系提供阻尼力,从而减小地震作用对结构的破坏。黏滞阻尼器对振动的反应比较敏感,在结构受到较小振动时就可以发挥其减震效果,其阻尼力会随着振动周期和使用状态温度的不同而变化。当地震发生时,安装在结构中的阻尼器会消减地震作用,降低传导到主结构体系的地震能量,减小结构相对位移。本文介绍了黏滞阻尼器的工作原理和安装有黏滞阻尼器的结构体系的阻尼比的计算方法,对减震结构的减震效果的评析方法做出探讨,并以一安装有黏滞阻尼器的台湾某既有钢框架结构为例,分析了(1)该结构在遭受地震作用时的地震反应;(2)该结构体系在不同地震作用水平时的阻尼比,包括主体结构阻尼比和黏滞阻尼器阻尼比;(3)结构安装黏滞阻尼器后的减震效果。实例对本文的减震评析方法和减震效果进行了说明和分析,计算及分析结果表明利用黏滞阻尼器加固既有结构能够取得较好的减震效果,本文所提减震效果评析方法是一种实用有效的评析方法,对类似工程的减震评析具有一定的参考价值。  相似文献   

10.
The insertion of fluid viscous dampers in building structures is an innovative technology that can improve significantly the seismic response. These devices could be very useful also in the retrofit of existing buildings. The effect of this typology of damping system is usually identified with an equivalent supplemental damping ratio, which depends on the maximum displacement of the structure, so that iterative procedures are required. In this paper, a simplified direct assessment method for nonlinear structures equipped with nonlinear fluid viscous dampers is proposed. The method proposed in this study is composed by two steps. The first one yields the direct estimate of the supplemental damping ratio provided by nonlinear viscous dampers in presence of a linear elastic structural response. The second step extends the procedure to structures with nonlinear behavior. Both graphical and analytical approaches have been developed. The proposed method has then been verified through several applications and comparisons with nonlinear dynamic analyses. Moreover, an investigation has been performed with regard to the influence of the relations that define the damping reduction factor and the hysteretic damping. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
利用半主动变阻尼控制装置开展连续梁桥结构在纵向地震波作用下的振动控制研究,通过建立桥梁结构-半主动变阻尼系统力学模型和运动微分方程,进行不同地震波激励下,连续梁桥关键部位在无控?半主动变阻尼控制和主动控制下的响应值分析计算,其中最优控制力采用LQR算法确定,半主动变阻尼控制采用限界Hrovat最优控制算法。计算结果表明:半主动变阻尼控制与主动控制的控制效果接近,两者均起到了良好的减震作用,而其中半主动变阻尼控制所需能量少?设施经济可靠,是一种良好的结构减震控制方法。  相似文献   

12.
The multifunctional vibration–absorption RC megaframe structures, which act as tuned mass dampers, base isolators and damping energy‐dissipaters, are presented. The proposed systems are essentially different from the normal megaframe structures in earthquake responses, failure mechanism, and theoretical model of seismic design. The elasto‐plastic dynamic analyses show that the earthquake responses of the multifunctional vibration–absorption RC megaframe structures decrease significantly in comparison with the normal megaframe structures, namely 60–80 per cent decrease of the earthquake responses of the major frames and 70–90 per cent decrease of the ones of the minor frames. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The damping‐solvent extraction method for the analysis of unbounded visco‐elastic media is evaluated numerically in the frequency domain in order to investigate the influence of the computational parameters—domain size, amount of artificial damping, and mesh density—on the accuracy of results. An analytical estimate of this influence is presented, and specific questions regarding the influence of the parameters on the results are answered using the analytical estimate and numerical results for two classical problems: the rigid strip and rigid disc footings on a visco‐elastic half‐space with constant hysteretic material damping. As the domain size is increased, the results become more accurate only at lower frequencies, but are essentially unaffected at higher frequencies. Choosing the domain size to ensure that the static stiffness is computed accurately leads to an unnecessarily large domain for analysis at higher frequencies. The results improve by increasing artificial damping but at a slower rate as the total (material plus artificial) damping ratio ζt gets closer to 0.866. However, the results do not deteriorate significantly for the larger amounts of artificial damping, suggesting that ζt≈0.6 is appropriate; a larger value is not likely to influence the accuracy of results. Presented results do not support the earlier suggestion that similar accuracy can be achieved by a large bounded domain with small damping or by a small domain with larger damping. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

15.
Multiple tuned mass dampers (MTMD) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are taken into consideration for attenuating undesirable vibration of a structure under the ground acceleration. A study is conducted to search for the preferable MTMD which performs better and is easily manufactured from the five available models (i.e. MTMD‐1 – MTMD‐5), which comprise various combinations of the stiffness, mass, damping coefficient and damping ratio in the MTMD. The major objective of the present study then is to evaluate and compare the control performance of these five models. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled by adopting the mode reduced‐order approach. The optimum parameters of the MTMD‐1 – MTMD‐5 are investigated to reveal the influence of the important parameters on their effectiveness and robustness using a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, mass ratio and total number. The criteria selected for the optimum searching are the minimization of the maximum value of the displacement dynamic magnification factor (DDMF) and that of the acceleration dynamic magnification factor (ADMF) of the structure with the MTMD‐1 – MTMD‐5 (i.e. Min.Max.DDMF and Min.Max.ADMF). It is demonstrated that the optimum MTMD‐1 and MTMD‐4 yield approximately the same control performance, and offer higher effectiveness and robustness than the optimum MTMD‐2, MTMD‐3, and MTMD‐5 in reducing the displacement and acceleration responses of structures. It is further demonstrated that for both the best effectiveness and robustness and the simplest manufacturing, it is preferable to select the optimum MTMD‐1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Supplemental viscous damping devices are generally envisioned to be connected in parallel to the inelastic parent structure or hysteretic damping devices. This gives rise to higher base shear, and often greater ductility demand of the hysteretic system. The series connection of the viscous and hysteretic system (the inelastic structure or a damper) is an alternative approach. In this paper, comparisons between the series and parallel connections of the hysteretic system and viscous dampers are done through response spectra analyses of single degree of freedom structures. Ductility demand of the hysteretic system and the total base shear are chosen as the response quantities. For the series model, a semi‐implicit solution scheme for classical Maxwell model is modified to include the inelasticity of the time‐independent hysteretic spring. It is observed that the series connection of the 2 dampers gives lower base shear than does the parallel connection. For long‐period and low‐damping structures, the ductility demand of the hysteretic system in series connection is higher than that in parallel connection. Increasing the viscous damping in series connection reduces the ductility demand substantially, lower than that obtained in parallel connection. Practical methods for implementing the series and parallel connections, in line with roof isolation, are also suggested.  相似文献   

17.
Multiple tuned mass dampers (MTMDs) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the MTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the MTMD by conducting a numerical searching technique in two directions. The parameters include: the frequency spacing, average damping ratio, mass ratio and total number. The criterion selected for the optimization is the minimization of the maximum value of the dynamic magnification factor (DMF) of the structure with MTMD (i.e. Min.Max.DMF). In this paper, for the sake of comparison, the MTMD(II), which is made by keeping the mass constant and varying the stiffness and damping coefficient, and a single TMD are also taken into account. It is demonstrated that the optimum frequency spacing of the MTMD is the same as that of the MTMD(II) and the optimum average damping ratio of the MTMD is a little larger than that of the MTMD(II). It is also found that the optimum MTMD is more effective than the optimum MTMD(II) and the optimum single TMD with equal mass. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
There has been a significant increase in the size of building structures in recent years. Huge structures such as high‐rise buildings and large‐domed stadiums require high‐performance structural control, including the use of high‐capacity dampers, especially in an earthquake‐prone country like Japan. The objective of the present study was the enhancement of both human and structural safety in such structures through the development of a rate‐dependent type of damper with a high damping capacity. Among the various available types of rate‐dependent dampers, the authors focused on the oil damper owing to its stable performance against long‐duration vibrations. The target maximum damping force was 6000 kN, which is higher than that of any existing oil damper utilized in building structures. The authors developed a novel concept for achieving this high capacity while maintaining the size of the damper within acceptable dimensions from an architectural point of view. The concept involves the use of multiple damper units that produce mechanically parallel damping forces spatially arranged in series. As a prototype, a 1500‐kN oil damper was fabricated by combining three 500‐kN dampers. The 1500‐kN prototype damper was conceived as a full‐scale prototype of a damper that is more slender than comparable commercially available dampers in Japan, and as a scaled model of the proposed 6000‐kN damper. Sinusoidal loading tests were conducted on the prototype damper using a frequency range of 0.1–1.5 Hz and a velocity range of 0.4–300 mm/s. The results confirmed that the damper produced the design damping forces. The results of earthquake loading tests also revealed that the damper exerted a stable damping force against a large earthquake and maintained its performance after the earthquake. The damper is particularly effective against earthquakes with long‐period components that could increase the temperature of a damper. This is afforded by its high heat capacity compared to conventional dampers. Considering that the proposed 6000‐kN damper will generate a damping force that is about 2–3 times that of the strongest conventional oil damper, existing manufacturer test machines would be inadequate for evaluating its full performance characteristics. To address this issue, the authors also propose a test method for evaluating the overall damping force. The method is premised on the fact that the characteristic feature of the proposed damper is its combination of multiple damper units. The overall performance is thus evaluated using the test results for the individual damper units while the other dampers are bypassed. This method was verified by the results of the abovementioned sinusoidal loading tests, with the error for the 1500‐kN prototype damper found to be less than 5%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Viscous fluid dampers have proved to be effective in suppressing unwanted vibrations in a range of engineering structures. When dampers are fitted in a structure, a brace is typically used to attach them to the main structure. The stiffness of this brace can significantly alter the effectiveness of the damper, and in structures with multiple dampers, this can be a complex scenario to model. In this paper, we demonstrate that the effects of the brace compliance on the damper performance can be modelled by way of a first‐order filter. We use this result to formulate a procedure that calculates the stiffness required by the supporting brace to provide a specified effectiveness of the damping action. The proposed procedure assumes that viscous dampers have been sized in a previous design step based on any optimal methodology in which, as is usually the case, the presence of supporting braces and their dynamic effects were neglected. Firstly considering a one degree‐of‐freedom system, we show that the proposed method ensures a desired level of damper efficiency for all frequencies within a selected bandwidth. Then the analysis is extended to the case of multi‐degree‐of‐freedom systems to show that the design criteria can be applied in a straightforward and successful manner to more complex structures. © 2014 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

20.
Supplemental damping could mitigate the earthquake‐induced damage in buildings with asymmetric plan, known to be more vulnerable to damage than comparable symmetric‐plan buildings. This investigation aims to improve the understanding of how and why planwise distribution of fluid viscous dampers (FVDs) influences the response of linearly elastic, one‐storey, asymmetric‐plan systems. Starting with vibration mode shapes, we predict this influence on the modal damping ratios, and in turn on the individual modal responses and the total response. These predictions are confirmed by the computed responses, which demonstrated that the reduction in earthquake response of the system achieved by supplemental damping is strongly influenced by its planwise distribution, which is characterized by four parameters. Identified are asymmetric distributions of supplemental damping that are more effective in reducing the response compared to symmetric distribution. The percentage reduction achieved by a judiciously selected asymmetric distribution can be twice or even larger compared to symmetric distribution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号