首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 6 毫秒
1.
In this work, we present a new method in designing static output‐feedback H controllers suitable for vibrational control of buildings under seismic excitation. The method produces a Linear Matrix Inequality (LMI) formulation that allows obtaining static output‐feedback controllers with different information structure constraints by imposing a convenient zero–nonzero structure on the LMI variables. The application of the proposed methodology is illustrated by designing centralized and decentralized velocity‐feedback H controllers to mitigate the seismic response of a five‐story building. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A new control algorithm is developed for reducing the response of smart base isolated buildings with variable friction semiactive control systems in near‐fault earthquakes. The central idea of the control algorithm is to design a H controller for the structural system and use this controller to determine the optimum control force in the semiactive device. The H controller is designed using appropriate input and output weighting filters that have been developed for optimal performance in reducing near‐fault earthquake responses. A novel semiactive variable friction device is also developed and with the H controller shown to be effective in achieving response reductions in smart base isolated buildings in near‐fault earthquakes. The new variable friction device developed consists of four friction elements and four restoring spring elements arranged in a rhombus configuration with each arm consisting of a friction–stiffness pair. The level of friction force can be adjusted by varying the angle of the arms of the device leading to smooth variation of friction force in the device. Experimental results are presented to verify the proposed analytical model of the device. The H algorithm is implemented analytically on a five storey smart base isolated building with linear elastomeric isolation bearings and variable friction system located at the isolation level. The H controller along with the weighting filters leads to the smooth variation of friction force, thus eliminating the disadvantages associated with rapid switching. Several recent near‐fault earthquakes are considered in this study. The robustness of the H controller is shown by considering a stiffness uncertainty of ±10%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A rational approach is presented for minimizing the dynamic response of reinforced concrete framed structures forced by a seismic base acceleration. Reference is made to EC8 regulations, but the presented approach may in principle be applied to structures ruled by any regulation code. Governing equations are set in the frequency domain (and not in the periods domain as usual) so as to enable the adoption of sound approaches for analysis and design of dynamic structures that are typical of automatics. Among these, a novel usage of the H‐norm concept is proposed that determines a rational design approach capable to minimize the structural response with reference to any quantity of engineering interest, eg, the overall compliance and the displacement of a specific point or the interstorey drift. A numerical investigation on a 6‐storey 3‐bay frame is performed, and relevant analysis and design results are presented in much detail to validate the theoretical framework.  相似文献   

4.
将结构前两阶振型各自等效为单自由度,采用模态pushover分析确定各等效单自由度的屈服强度系数和延性系数,然后由反应谱计算各阶振型耗散能量需求,利用各振型能量分布曲线,求得各层耗散能量需求,叠加得到各层地震总能量需求,据此确定耗能装置的类型及设计参数.运用该方法对9层钢框架进行了设计,并通过非线性动力分析进行了验证,结果表明该方法精确度符合实际工程需求.  相似文献   

5.
A new computational framework is developed for the design and retrofit of building structures by considering aseismic design as a complex adaptive process. For the initial phase of the development within this framework, genetic algorithms are employed for the discrete optimization of passively damped structural systems. The passive elements may include metallic plate dampers, viscous fluid dampers and viscoelastic solid dampers. The primary objective is to determine robust designs, including both the non‐linearity of the structural system and the uncertainty of the seismic environment. Within the present paper, this computational design approach is applied to a series of model problems, involving sizing and placement of passive dampers for energy dissipation. In order to facilitate our investigations and provide a baseline for further study, we introduce several simplifications for these initial examples. In particular, we employ deterministic lumped parameter structural models, memoryless fitness function definitions and hypothetical seismic environments. Despite these restrictions, some interesting results are obtained from the simulations and we are able to gain an understanding of the potential for the proposed evolutionary aseismic design methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This article describes a design procedure for elastic buildings equipped with linear and nonlinear energy dissipating devices. The objective is to achieve a design that responds to a target building performance following a simple and robust step-by-step algorithm. The proposed procedure identifies first the modal significance of key design performance indicators and controls the modal properties by solving a singular two-parameter eigenvalue problem. For that purpose, a new modal significance metric is proposed, and a target frequency shift and damping ratio for the complete structure are obtained from the so-called iso-performance design curves. The design algorithm employs linear-equivalent stiffness and damping properties, which are then transformed into parameters characterizing inelastic force-deformation constitutive models corresponding to physical devices. The design algorithm leads to an optimal damper distribution corresponding to the minimum global amount of supplemental equivalent damping needed to achieve a maximum modal perturbation. The design procedure is first demonstrated using a five-story building example and then a real and complex 22-story free-plan building with two towers of rhomboid-shape plan with a very singular dynamic behavior.  相似文献   

7.
It is not common to purposely subject the web of wide‐flange or I‐sections to out‐of‐plane bending. However, yielding the web under this loading condition can be a stable source of energy dissipation as the transition at the corner from the web to the flanges is smooth and weld‐free; this prevents stress concentrations causing premature failure and eliminates uncertainties and imperfections associated with welding. Further, short segments of wide‐flange or I‐sections constitute a simple and inexpensive energy dissipating device as minimum manufacturing is required and leftovers not useful for other structural purposes can be re‐utilized. This paper proposes a new type of seismic damper in the form of braces based on yielding the web of short length segments of wide‐flange or I‐shaped steel sections under out‐of‐plane bending. The hysteretic behavior and ultimate energy dissipation capacity is investigated via component tests under cyclic loads. The experimental results indicate that the damping device has stable restoring force characteristics and a high energy dissipation capacity. Based on these results, a simple hysteretic model for predicting the load–displacement curve of the seismic damper is proposed, along with a procedure for predicting its ultimate energy dissipation capacity and anticipating its failure under arbitrarily applied cyclic loads. The procedure considers the influence of the loading path on the ultimate energy dissipation capacity. Finally, shaking table tests on half‐scale structures are conducted to further verify the feasibility and effectiveness of the new damper, and to assess the accuracy of the hysteretic model and the procedure for predicting its failure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A computational algorithm for maximizing the control efficiency in actively controlling the elastic structural responses during earthquake is proposed. Study of optimal linear control using a single degree of freedom shows that applying active control is very effective in reducing the structural displacement and velocity responses for long‐period structures, but at the same time it has an adverse effect in increasing the absolute acceleration response. The extent of this adverse effect reduces the effectiveness of the control system, and therefore it poses a limit on the maximum control force in order to provide maximum control efficiency. In view of this shortcoming, maximum control energy dissipation is used to define the most effective optimal linear control law. Less displacement and velocity response are expected as larger control force is applied, but there is always a limit that maximum control energy can be dissipated. This study shows that this limit depends on the structural characteristics as well as the input ground motion, and a general trend is that the maximum control energy decreases as damping increases. Finally, application of the proposed algorithm on a six‐storey hospital building is presented to show the effectiveness of using optimal linear control on a multi‐degree‐of‐freedom system from the control energy perspectives. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
抗震与减震结构的能量分析方法研究与应用   总被引:37,自引:7,他引:37  
本文总结了抗震,减震结构能量分析方法的研究及其在设计中的应用情况,包括能量垢要领和原理,结构能量反应方程的建立、地震动总输入能量及结构各部分能量的分析,计算方法及其影响因素,并对能量分析方法与设计方法在抗震,隔震及耗能减震结构体系中的应用做了介绍,提出了该方法在今后研究与应用中应注意的若干问题。  相似文献   

10.
The majority of the recent research effort on structural control considers two‐dimensional plane structures. However, not all buildings can be modelled as plane structures, thus limiting the capability of the proposed procedures only to regular and symmetrical structures. A new procedure is developed in this paper to analyse three‐dimensional buildings utilizing passive and active control devices. In the building model, the floors are assumed rigid in their own plane resulting in three degrees of freedom at each floor. Two types of active control devices utilizing an active tuned mass damper and an active bracing system are considered. The effect of passive mass dampers and active control force in the equations of motion is incorporated by using the Hamilton's principle. The passive parameters of the dampers as well as the controller gain is then optimized using a genetic based optimizer where the H2, H and L1 norms are taken as the objective functions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Ductile‐jointed connections, which generally require some form of supplementary energy dissipation to alleviate displacement response, typically employ mild steel energy dissipation devices. These devices run the risk of low‐cycle fatigue, are effective only for peak cycles that exceed prior displacements, are prone to buckling, and may require replacement following an earthquake. This study presents an experimental investigation employing an alternative to mild steel: a high force‐to‐volume (HF2V) class of damper‐based energy dissipation devices. Tests are performed on a near full‐scale beam–column joint subassembly utilizing externally mounted compact HF2V devices. Two configurations are considered: an exterior joint with two seismic beams and one gravity beam framing into a central column, and a corner joint with only one seismic beam and one gravity beam framing into a column. Quasi‐static tests are performed to column drifts up to 4%. The experiments validate the efficacy of the HF2V device concept, demonstrating good hysteretic energy dissipation, and minimal residual device force, allowing ready re‐centring of the joint. The devices dissipate energy consistently on every cycle without the deterioration observed in the yielding steel bar type of devices. The effectiveness of the HF2V devices on structural hysteretic behavior is noted to be sensitive to the relative stiffness of the anchoring elements, indicating that better efficiency would be obtained in an embedded design. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented in two papers. Although the subject matter of the papers is a specific system, they are also intended as an illustration of practical application of diverse engineering tools in systematic development of an anti‐seismic product. The Multi‐directional Torsional Hysteretic Damper (MTHD) is a recently patented invention in which a symmetrical arrangement of identical cylindrical steel energy dissipaters is configured to yield in torsion while the structure experiences planar movements due to earthquake shakings. The device has gone through many stages of design refinement, prototype verification tests and development of design guidelines and computer codes to facilitate its implementation in practice. The first of this two‐part paper summarizes the development stages of the new system, conceptual and analytical. The experimental phase of the research is the focus of the accompanying paper. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable‐via‐design or adaptive post‐elastic stiffness. This feature gives the isolated structure the capability to evade the dominant period of the ground motion leading to reduced displacements while having force levels comparable to regular bilinear isolation systems. The device has already been applied to four major bridges. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Current reliability‐based control techniques have been successfully applied to linear systems; however, incorporation of stochastic nonlinear behavior of systems in such control designs remains a challenge. This paper presents two reliability‐based control algorithms that minimize failure probabilities of nonlinear hysteretic systems subjected to stochastic excitations. The proposed methods include constrained reliability‐based control (CRC) and unconstrained reliability‐based control (URC) algorithms. Accurate probabilistic estimates of nonlinear system responses to stochastic excitations are derived analytically using enhanced stochastic averaging of energy envelope proposed previously by the authors. Convolving these demand estimates with capacity models yields the reliability of nonlinear systems in the control design process. The CRC design employs the first‐level and second‐level optimizations sequentially where the first‐level optimization solves the Hamilton–Jacobi–Bellman equation and the second‐level optimization searches for optimal objective function parameters to minimize the probability of failure. In the URC design, a single optimization minimizes the probability of failure by directly searching for the optimal control gain. Application of the proposed control algorithms to a building on nonlinear foundation has shown noticeable improvements in system performance under various stochastic excitations. The URC design appears to be the most optimal method as it reduced the probability of slight damage to 8.7%, compared with 11.6% and 19.2% for the case of CRC and a stochastic linear quadratic regulator, respectively. Under the Kobe ground motion, the normalized peak drift displacement with respect to stochastic linear quadratic regulator is reduced to 0.78 and 0.81 for the URC and CRC cases, respectively, at comparable control force levels. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The lack of direct correspondence between control objectives and hazard risks over the lifetime of systems is a key shortcoming of current control techniques. This along with the inability to objectively analyze the benefits and costs of control solutions compared with conventional methods has hindered widespread application of control systems in seismic regions. To address these gaps, this paper offers 2 new contributions. First, it introduces risk‐based life cycle–cost (LCC) optimal control algorithms, where LCC is incorporated as the performance objective in the control design. Two strategies called risk‐based linear quadratic regulator and unconstrained risk‐based regulator are subsequently proposed. The considered costs include the initial cost of the structure and control system, LCC of maintenance, and probabilistically derived estimates of seismic‐induced repair costs and losses associated with downtime, injuries, and casualties throughout the life of the structure. This risk‐based framework accounts for uncertainties in both system properties and hazard excitations and uses outcrossing rate theory to estimate fragilities for various damage states. The second contribution of this work is a risk‐based probabilistic framework for LCC analysis of existing and proposed control strategies. The proposed control designs are applied to the nonlinear model of a 4‐story building subjected to seismic excitations. Results show that these control methods reduce the LCC of the structure significantly compared with the status quo option (benefits of up to $1 351 000). The advancements offered in this paper enhance the cost‐effectiveness of control systems and objectively showcase their benefits for risk‐informed decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号