首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用神经网络和Kalman滤波技术,提出了一种直接识别结构物理参数的方法,用Kalman滤波技术训练网络。在贮仓振动台实验的基础上,用贮仓在动载作用下的位移、速度作为网络的输入,激振加速度和响应加速度作为网络的输出。仿真计算表明,本文方法是可行的。  相似文献   

2.
For the simulation of the transport of dissolved matter particle models can be used. In this paper a technique is developed for the identification of uncertain parameters in these models. This model calibration is formulated as an optimization problem and is solved with a gradient based algorithm. Here adjoint particle tracks are used for the calculation of the gradient of the cost function. The performance of the calibration method is illustrated by simulations and an application to a river Rhine water quality calamity in November 1986.  相似文献   

3.
For the simulation of the transport of dissolved matter particle models can be used. In this paper a technique is developed for the identification of uncertain parameters in these models. This model calibration is formulated as an optimization problem and is solved with a gradient based algorithm. Here adjoint particle tracks are used for the calculation of the gradient of the cost function. The performance of the calibration method is illustrated by simulations and an application to a river Rhine water quality calamity in November 1986.  相似文献   

4.
Time and space variant soil properties at a liquefied site were simultaneously identified in the time domain by using borehole array strong motion records. During soil liquefaction at a site, soils usually show a wide variety of non-linear behavior along the depth as well as non-stationary behavior. Strong ground motion records were obtained at Port Island borehole array observatory, Kobe, during the 1995 Hyogoken-Nanbu earthquake. In this study, the instrumented soil was modeled by the equivalent linear MDOF system, and an extended Kalman filter with local iteration was employed for the identification of the soils. The identification process was successfully conducted, and the stress–strain relationships of the soils at the liquefied site were obtained from different depths all at once.  相似文献   

5.
This paper introduces the eigenspace structural identification technique for tall buildings subjected to ambient excitations that are stationary and where only the response time histories are measured. Based on the forward innovation model of the Kalman filter sequence, the actual response can be constructed as a function of the measured response time history with contamination of either displacement or velocity. The response time history is decomposed into subspace matrices using QR decomposition and Quotient Singular Value Decomposition (QSVD) techniques. These are then substituted into the least-square formulation to obtain the solution which is non-unique. Similarity transformation is applied to arrive at the desired solution employing the fact that eigenvalues of self-similar systems are identical. The advantages of this eigenspace technique are that it is non-iterative, initial estimates of the parameters to the identified are not required, well-established numerical algorithm of the decomposition techniques employed are available, and the method can handle MDOF systems efficiently. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction. A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency-dependent behavior of soils. For layered soil, the equivalent eight parameters of the 2DOF model arc identified by the extended Kalman filter (EKF) method using recorded seismic data. The polynomial approximations for derivation of state estimators are applied in the EKF procedure. A realistic identification example is given for the layered-soil of a building site in Anchorage, Alaska in the United States. Results of the example demonstrate the feasibility and practicality of the proposed identification technique. The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered of complex soil conditions. The identified parameters can be stored in a database for use in other similar soil conditions. If a universal database that covers information related to most soil conditions is developed in the future, engineers could conveniently perform time history analyses of soil-structural interaction.  相似文献   

7.
The results of an experimental study conducted on two 1:2 reduced-scale geotextile-reinforced soil retaining walls are presented and discussed. El Centro earthquake and sinusoidal harmonic motion excitations were applied to the 1.9 m tall models. The design parameter investigated was the reinforcement length (L/H = 0.9 in the 1st model and L/H = 0.6 in the 2nd model). The results were analyzed to evaluate the acceleration amplification, strains in the reinforcement layers and facing wall deformation. The test results showed that in both experiments the walls were in fact designed to behave rigidly and almost no residual displacements were observed on the front of the wall. The most important conclusion drawn from the experimental work was that Geosynthetic Reinforced Retaining Structures designed according to the current specifications behave very successfully under earthquake loading conditions.  相似文献   

8.
基于HHT的非线性结构系统识别研究   总被引:11,自引:2,他引:11  
本文研究基于HHT的多自由度非线性结构系统识别方法。首先通过EMD分解得到结构的非线性模态(NNM),然后对非线性模态进行H ilbert分析,识别出结构的瞬时特征参数(瞬时振幅、瞬时固有频率等),进而由各参数间关系识别出非线性结构的类型。最后通过一个具有非线性刚度的两自由度剪切型建筑结构的数值模拟验证了该方法的有效性。  相似文献   

9.
Techniques developed for structural identification of a structural model are typically based on information regarding the response and the forcing actions. However, in some situations it can be necessary, or simply useful, to refer only to the measured responses. In this paper we describe a technique suitable for identifying the modal model of a spatial frame in the frequency domain when the seismic input is unknown both in time contents and direction. In some previous theoretical works we established that this identification problem has a unique solution when at least three time‐history responses are known. Here numerical techniques are developed which allow the evaluation of the modal quantities in practice. Numerical applications are carried out on plane and spatial framed structures by using a modal model which may be complete, including all the structure's modes, or incomplete, including only the lowest modes. In most cases the obtained results are satisfactory. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, we formulate an improved finite element model‐updating method to address the numerical difficulties associated with ill conditioning and rank deficiency. These complications are frequently encountered model‐updating problems, and occur when the identification of a larger number of physical parameters is attempted than that warranted by the information content of the experimental data. Based on the standard bounded variables least‐squares (BVLS) method, which incorporates the usual upper/lower‐bound constraints, the proposed method (henceforth referred to as BVLSrc) is equipped with novel sensitivity‐based relative constraints. The relative constraints are automatically constructed using the correlation coefficients between the sensitivity vectors of updating parameters. The veracity and effectiveness of BVLSrc is investigated through the simulated, yet realistic, forced‐vibration testing of a simple framed structure using its frequency response function as input data. By comparing the results of BVLSrc with those obtained via (the competing) pure BVLS and regularization methods, we show that BVLSrc and regularization methods yield approximate solutions with similar and sufficiently high accuracy, while pure BVLS method yields physically inadmissible solutions. We further demonstrate that BVLSrc is computationally more efficient, because, unlike regularization methods, it does not require the laborious a priori calculations to determine an optimal penalty parameter, and its results are far less sensitive to the initial estimates of the updating parameters. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, we determine an updated finite element model of a reinforced concrete building—which was damaged from shaking during 1994 Northridge earthquake—using forced‐vibration test data and a novel model‐updating technique. Developed and verified in the companion paper (viz. BVLSrc, Earthquake Eng. Struct. Dyn. 2006; this issue), this iterative technique incorporates novel sensitivity‐based relative constraints to avoid ill conditioning that results from spatial incompleteness of measured data. We used frequency response functions and natural frequencies as input for the model‐updating problem. These data were extracted from measurements obtained during a white‐noise excitation applied at the roof of the building using a linear inertial shaker. Flexural stiffness values of properly grouped structural members, modal damping ratios, and translational and rotational mass values were chosen as the updating parameters, so that the converged results had direct physical interpretations, and thus, comparisons with common parameters used in seismic design and evaluation of buildings could be made. We investigated the veracity of the updated finite element model by comparing the predicted and measured dynamic responses under a second, and different type of forced (sine‐sweep) vibration, test. These results indicate that the updated model replicates the dynamic behaviour of the building reasonably well. Furthermore, the updated stiffness factors appear to be well correlated with the observed building damage patterns (i.e. their location and severity). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
基于随机子空间的结构参数识别及振动台试验验证   总被引:5,自引:4,他引:1  
本文依照实际工程的背景,提出一种改进的随机子空间参数识别方法;考虑了实际的结构振动测试,提出一种基于参考点的随机子空间系统识别方法。本文最后对此方法在五层钢框架结构模型上进行了振动台试验验证,试验结果表明,该方法具有良好的识别效果。  相似文献   

13.
The objective of this study is to identify system parameters from the recorded response of base isolated buildings, such as USC hospital building, during the 1994 Northridge earthquake. Full state measurements are not available for identification. Additionally, the response is nonlinear due to the yielding of the lead-rubber bearings. Two new approaches are presented in this paper to solve the aforementioned problems. First, a reduced order observer is used to estimate the unmeasured states. Second, a least squares technique with time segments is developed to identify the piece-wise linear system properties. The observer is used to estimate the initial conditions needed for the time segmented identification. A series of equivalent linear system parameters are identified in different time segments. It is shown that the change in system parameters, such as frequencies and damping ratios, due to nonlinear behavior of the lead-rubber bearings, are reliably estimated using the presented technique. It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.  相似文献   

14.
This paper presents an efficient procedure to determine the natural frequencies, modal damping ratios and mode shapes for torsionally coupled shear buildings using earthquake response records. It is shown that the responses recorded at the top and first floor levels are sufficient to identify the dominant modal properties of a multistoried torsionally coupled shear building with uniform mass and constant eccentricity even when the input excitation is not known. The procedure applies eigenrealization algorithm to generate the state‐space model of the structure using the cross‐correlations among the measured responses. The dynamic characteristics of the structure are determined from the state‐space realization matrices. Since the mode shapes are obtained only at the instrumented floor (top and first floors) levels, a new mode shape interpolation technique has been proposed to estimate the mode shape coefficients at the remaining floor levels. The application of the procedure has been demonstrated through a numerical experiment on an eight‐storied torsionally coupled shear building subjected to earthquake base excitation. The results show that the proposed parameter identification technique is capable of identifying dominant modal parameters and responses even with significant noise contamination of the response records. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Shear keys are used in the bridge abutments and piers to provide transverse restraints for bridge superstructures. Owing to the relatively small dimensions compared to the main bridge components (girders, piers, abutments, piles), shear keys are normally regarded as secondary component of a bridge structure, and their influences on bridge seismic responses are normally neglected. In reality, shear keys are designed to restrain the lateral displacements of bridge girders, which will affect the transverse response of the bridge deck, thus influence the overall structural responses. To study the influences of shear keys on bridge responses to seismic ground excitations, this paper performs numerical simulations of the seismic responses of a two-span simply-supported bridge model without or with shear keys in the abutments and the central pier. A detailed 3D finite element (FE) model is developed by using the explicit FE code LS-DYNA. The bridge components including bridge girders, piers, abutments, bearings, shear keys and reinforcement bars are included in the model. The non-linear material behaviour including the strain rate effects of concrete and steel rebar are considered. The seismic responses of bridge structures without and with shear keys subjected to bi-axial spatially varying horizontal ground motions are calculated and compared. The failure mode and damage mechanism of shear keys are discussed in detail. Numerical results show that shear keys restrain transverse movements of bridge decks, which influence the torsional–lateral responses of the decks under bi-axial spatially varying ground excitations; neglecting shear keys in bridge response analysis may lead to inaccurate predictions of seismic responses of bridge structures.  相似文献   

17.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
新型钢管混凝土柱框架节点低周反复荷载试验研究   总被引:7,自引:1,他引:6  
本文介绍了新型钢管混凝土柱框架节 低以复荷载作用下的试验结果,对其抗震性能进行了探讨,并提出了改进设计的建议。  相似文献   

19.
混凝土框架模型结构参数的识别   总被引:2,自引:1,他引:1  
框架结构是常见的建筑结构形式,也是结构损伤诊断的主要研究对象之一。本文以钢筋混凝土框架结构模型的振动测试数据为基础,采用灵敏度分析方法,对结构的物理参数进行识别。有限元分析中,考虑框架结构的节点转动,采用静凝聚方法得到结构刚度矩阵。参数识别结果表明,对于不同的固有频率和振型的测试信息组合所识别的物理参数有所不同。根据已知的概率分布,利用MonteCarlo方法,将模态参数的不确定性传递给物理参数,得到了物理参数的不确定性。  相似文献   

20.
Dynamic characteristics of structures — viz. natural frequencies, damping ratios, and mode shapes — are central to earthquake‐resistant design. These values identified from field measurements are useful for model validation and health‐monitoring. Most system identification methods require input excitations motions to be measured and the structural response; however, the true input motions are seldom recordable. For example, when soil–structure interaction effects are non‐negligible, neither the free‐field motions nor the recorded responses of the foundations may be assumed as ‘input’. Even in the absence of soil–structure interaction, in many instances, the foundation responses are not recorded (or are recorded with a low signal‐to‐noise ratio). Unfortunately, existing output‐only methods are limited to free vibration data, or weak stationary ambient excitations. However, it is well‐known that the dynamic characteristics of most civil structures are amplitude‐dependent; thus, parameters identified from low‐amplitude responses do not match well with those from strong excitations, which arguably are more pertinent to seismic design. In this study, we present a new identification method through which a structure's dynamic characteristics can be extracted using only seismic response (output) signals. In this method, first, the response signals’ spatial time‐frequency distributions are used for blindly identifying the classical mode shapes and the modal coordinate signals. Second, cross‐relations among the modal coordinates are employed to determine the system's natural frequencies and damping ratios on the premise of linear behavior for the system. We use simulated (but realistic) data to verify the method, and also apply it to a real‐life data set to demonstrate its utility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号