首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actively deformed foreland of eastern Qilian Shan (mountains) contains well‐preserved geomorphic features such as erosion surfaces, river terraces and tectonically uplifted alluvial fans, providing suitable archives for research on regional tectonic activities and palaeoclimatic changes. These geomorphic surfaces are well dated by using a combination of magnetostratigraphy, electron spin resonance, thermoluminescence, infra‐red stimulated luminescence, radiocarbon dating, and correlation with the well‐established loess–palaeosol sequences of China. Our results show that the erosion surface formed about 1·4 Ma ago, and the age of river terraces is 1·24 Ma, 820–860 ka, 780 ka, 420–440 ka, 230–250 ka, 140 ka, 60 ka and 10 ka, respectively. Valley incision rates of c. 0·09–0·25 m ka?1 have been identified. The repetitive stratigraphic and geomorphic pattern of these terraces indicates the fluvial sedimentation–incision cycles are tightly associated with the 100‐ka glacial–interglacial climatic cycles. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Soils along catenas of Pinedale (15–20 ka) and Bull Lake (100–130 ka) age moraines at Whiskey Basin in the Wind River Range, Wyoming, USA, were sampled to assess the effects of aeolian processes on soil development here. Aeolian processes appear to have in?uenced soils by both depositing sediments and eroding topsoils. Pedogenic silt (often used as an indicator of wind deposition) accumulated in the Bull Lake soils moderately correlate with pedogenic clay accumulated, suggesting that ?ne sediments may have been deposited and incorporated into soil formation here. Following removal of previous topsoil by wind during Pinedale glaciation, Bull Lake B horizons have developed into contemporary A horizons. These data further link aeolian processes to soil development on piedmont moraines throughout the Wind River Range. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Cosmogenic exposure dating of moraines during the last two decades has vastly improved knowledge on the timing of glaciation worldwide. Due to a variety of geologic complications, such as moraine degradation, snow cover, bedrock erosion and isotopic inheritance, samples from multiple large boulders (>1–2 m) often lead to the most accurate moraine age assignments. However, in many cases, large boulders are not available on moraines of interest. Here, I test the suitability of pebble collections from moraine crest surfaces as a sample type for exposure dating. Twenty-two 10Be ages from two Pleistocene lateral moraine crests in Pine Creek valley in the upper Arkansas River basin, Colorado, were calculated from both pebble and boulder samples. Ten 10Be ages from a single-crested Bull Lake lateral moraine range between 3 and 72 ka, with no statistical difference between pebble (n = 5) and boulder (n = 5) ages. The lack of a cluster of 10Be ages suggests that moraine degradation has led to anomalously young exposure ages. Twelve 10Be ages from a single-crested Pinedale lateral moraine have a bimodal age distribution; one mode is 22.0 ± 1.4 ka (three boulders, two pebble collections), the other is 15.2 ± 0.9 ka (two boulders, five pebble collections). The interpretation of the two age modes is that two glacier maxima of similar extent were attained during the late Pleistocene. Regardless of moraine age interpretations, that 10Be ages from pebble collections and boulders are indistinguishable on moraines of two different ages, and in two different age modes of the Pinedale moraine, suggests that pebble collections from moraine crests may serve as a suitable sample type in some settings.  相似文献   

4.
Quantifying rates of river incision and continental uplift over Quaternary timescales offer the potential for modelling landscape change due to tectonic and climatic forcing. In many areas, river terraces form datable archives that help constrain the timing and rate of valley incision. However, old river terraces, with high-level deposits, are prone to weathering and often lack datable material. Where valleys are incised through karst areas, caves and sediments can be used to reconstruct the landscape evolution because they can record the elevation of palaeo-water tables and contain preserved datable material. In Normandy (N. France), the Seine River is entrenched into an extensive karstic chalk plateau. Previous estimates of valley incision were hampered by the lack of preserved datable fluvial terraces. A stack of abandoned phreatic cave passages preserved in the sides of the Seine valley can be used to reconstruct the landscape evolution of the region. Combining geomorphological observations, palaeomagnetic and U/Th dating of speleothem and sediments in eight caves along the Lower Seine valley, we have constructed a new age model for cave development and valley incision. Six identified cave levels up to ∼100 m a.s.l. were formed during the last ~1 Ma, coeval with the incision of the Seine River. Passage morphologies indicate that the caves formed in a shallow phreatic/epiphreatic setting, modified by sediment influxes. The valley's maximum age is constrained by the occurrence of late Pliocene marine sand. Palaeomagnetic dating of cave infills indicates that the highest-level caves were being infilled prior to 1.1 Ma. The evidence from the studied caves, complemented by fluvial terrace sequences, indicates that rapid river incision occurred during marine isotope stage (MIS) 28 to 20 (0.8–1 Ma), with maximal rates of ~0.30 m ka−1, dropping to ~0.08 m ka−1 between MIS 20–11 (0.8–0.4 Ma) and 0.05 m ka−1 from MIS 5 to the present time. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
天山北麓活动背斜区河流阶地与古地震事件   总被引:2,自引:2,他引:2       下载免费PDF全文
利用航空遥感照片和Google earth卫星影像,对天山北麓独山子活动背斜区奎屯河两侧的河流地貌进行解释,结合野外调查发现,奎屯河流经独山子背斜段发育7级基座阶地,阶地基座为上新统独山子组泥岩,其上部为2.5 ~ 15m厚的砂砾石层和砂质黏土.在开挖或剥离的各级阶地堆积物剖面中采集细粒堆积物样品,实验室中采用细粒石英...  相似文献   

6.
海南岛北西部新构造特征及其演化研究   总被引:3,自引:1,他引:2  
张军龙  田勤俭  李峰  高站武  苏刚 《地震》2008,28(3):85-94
利用DGPS系统测量海南岛西部阶地, 绘制地质地貌综合剖面, 将西部阶地分为海成阶地和河流阶地两种。 其中海成地貌包括一条砂堤和四级阶地: 砂堤宽2~10 m, 高程约10 m, 形成于5 ka以来; 海成一级阶地发育较好, 阶地面高程21~22 m, 形成于晚更新世至全新世之间; 海成二级阶地顶面高程约32 m左右, 形成于晚更新世晚期; 海成三级阶地较为发育, 阶地面高程40~42 m, 形成于121.8 ka; 海成四级阶地零星分布, 阶地面高程约57 m, 形成于中更新世晚期。 河流阶地也可分出四级: 一级阶地高程约20 m, 局部发育, 形成于11.4 ka; 二级阶地高程约34 m, 形成于47.2 ka; 三级阶地高约50 m, 其基座顶面标高约41 m, 形成于晚更新世早期; 四级阶地高程约71 m, 基座面标高约60 m, 形成于中更新世晚期。 这些阶地中均以二级最为发育。 晚更新世以来全区处于整体加速抬升的状态。 依据阶地面的综合剖面特征, 认为王五-文教断裂晚更新世以来的活动性较弱。  相似文献   

7.
The Colorado River system in southern Utah and northern Arizona is continuing to adjust to the baselevel fall responsible for the carving of the Grand Canyon. Estimates of bedrock incision rates in this area vary widely, hinting at the transient state of the Colorado and its tributaries. In conjunction with these data, we use longitudinal profiles of the Colorado and tributaries between Marble Canyon and Cataract Canyon to investigate the incision history of the Colorado in this region. We find that almost all of the tributaries in this region steepen as they enter the Colorado River. The consistent presence of oversteepened reaches with similar elevation drops in the lower section of these channels, and their coincidence within a corridor of high local relief along the Colorado, suggest that the tributaries are steepening in response to an episode of increased incision rate on the mainstem. This analysis makes testable predictions about spatial variations in incision rates; these predictions are consistent with existing rate estimates and can be used to guide further studies. We also present cosmogenic nuclide data from the Henry Mountains of southern Utah. We measured in situ 10Be concentrations on four gravel‐covered strath surfaces elevated from 1 m to 110 m above Trachyte Creek. The surfaces yield exposure ages that range from approximately 2·5 ka to 267 ka and suggest incision rates that vary between 350 and 600 m/my. These incision rates are similar to other rates determined within the high‐relief corridor. Available data thus support the interpretation that tributaries of the Colorado River upstream of the Grand Canyon are responding to a recent pulse of rapid incision on the Colorado. Numerical modeling of detachment‐limited bedrock incision suggests that this incision pulse is likely related to the upstream‐dipping lithologic boundary at the northern edge of the Kaibab upwarp. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The west watershed of Mirror Lake in the White Mountains of New Hampshire contains several terraces that are at different altitudes and have different geologic compositions. The lowest terrace (FSE) has 5 m of sand overlying 9 m of till. The two next successively higher terraces (FS2 and FS1) consist entirely of sand and have maximum thicknesses of about 7 m. A fourth, and highest, terrace (FS3) lies in the north‐west watershed directly adjacent to the west watershed. This highest terrace has 2 m of sand overlying 8 m of till. All terraces overlie fractured crystalline bedrock. Numerical models of hypothetical settings simulating ground‐water flow in a mountainside indicated that the presence of a terrace can cause local ground‐water flow cells to develop, and that the flow patterns differ based on the geologic composition of the terrace. For example, more ground water moves from the bedrock to the glacial deposits beneath terraces consisting completely of sand than beneath terraces that have sand underlain by till. Field data from Mirror Lake watersheds corroborate the numerical experiments. The geology of the terraces also affects how the stream draining the west watershed interacts with ground water. The stream turns part way down the mountainside and passes between the two sand terraces, essentially transecting the movement of ground water down the valley side. Transects of water‐table wells were installed across the stream's riparian zone above, between, and below the sand terraces. Head data from these wells indicated that the stream gains ground water on both sides above and below the sand terraces. However, where it flows between the sand terraces the stream gains ground water on its uphill side and loses water on its downhill side. Biogeochemical processes in the riparian zone of the flow‐through reach have resulted in anoxic ground water beneath the lower sand terrace. Results of this study indicate that it is useful to understand patterns of ground‐water flow in order to fully understand the flow and chemical characteristics of both ground water and surface water in mountainous terrain. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava damming. Four Middle Pleistocene lava flows (40Ar/39Ar‐ dated from 310 to 175 ka) filled and dammed the Gediz River at the Gediz–Geren confluence, resulting in base‐level fluctuations of the otherwise uplift‐driven incising river. Field reconstruction and luminescence dating suggest fluvial terraces in the Geren Catchment are capped by Middle Pleistocene aggradational fills. This showed that incision of the Geren trunk stream has been delayed until the end of MIS 5. Subsequently, the catchment has responded to base‐level lowering since MIS 4 by 30 m of stepped net incision. Field reconstruction left us with uncertainty on the main drivers of terrace formation. Therefore, we used landscape evolution modelling to investigate catchment response to three scenarios of base‐level change: (i) uplift with climate change (rainfall and vegetation based on arboreal pollen); (ii) uplift, climate change and short‐lived damming events; (iii) uplift, climate and long‐lived damming events. Outputs were evaluated for erosion–aggradation evolution in trunk streams at two different distances from the catchment outlet. Climate influences erosion–aggradation activity in the catchment, although internal feedbacks influence timing and magnitude. Furthermore, lava damming events partly control if and where these climate‐driven aggradations occur. Damming thus leaves a legacy on current landscape evolution. Catchment response to long‐duration damming events corresponds best with field reconstruction and dating. The combination of climate and base level explains a significant part of the landscape evolution history of the Geren Catchment. By combining model results with fieldwork, additional conclusions on landscape evolution could be drawn. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Takahiro  Yamamoto 《Island Arc》2005,14(2):199-212
Abstract River incision into bedrock results in the decrease of burial depths, which can be of critical importance, for example, in the safe long‐term storage of high‐level radioactive waste. For the long‐term prediction of river erosion, it is essential to know the rate of incision during the Late Quaternary period. In the Abukuma Mountains on the forearc side of northeast Japan, a low‐relief peneplain that was uplifted in the Pliocene period is widely developed. Degradational fluvial terraces that are discontinuously distributed along draining rivers are scattered in the study area. The fluvial sediments were mainly transported from the summit regions as debris flows or hyperconcentrated flows. The terrace deposits are capped by a series of eolian veneers containing key tephra beds. From the oldest to the youngest, these tephra beds are the 150–125 ka Iizuna–Kamitaru tephra, the 135–125 ka Hiuchigatake–Tagashira tephra, the 120 ka Adatara–Dake tephra, the 70–80 ka Bandai–Hayama‐2 tephra, the 45 ka Numazawa–Mizunuma tephra and the 42 ka Bandai–Hayama‐1 tephra. Using tephrochronological data, the terraces are divided into three groups: higher, middle and lower. The ages of formation of the higher, middle and lower terraces are estimated to be within marine isotope stage (MIS) 6, MIS 5.4–5.2 and MIS 3 to MIS 2, respectively. The incision rate, calculated from the relative height between the terrace surface and present‐day valley floor fill, is 1.5–0.8 m/10 000 years in the elevations from 350 to 700 m. The calculated rate does not show significant differences between the higher, middle and lower terraces. All the relative heights decrease with increasing elevation, because the erosional rates of streams in the upper reaches are lower than those in downstream reaches where the discharge rates are higher. This value can be regarded as an estimate of the rate of incision in granitic mountains where there is no volcanic or distinct tectonic activity.  相似文献   

11.
The stratigraphic chronology of Yellow River terraces was investigated and studied in Lanzhou Basin, western Chinese Loess Plateau. The optically stimulated luminescence (OSL) dating results show that terraces T1, T2 and T3 formed at 8 ka, 20 ka and 70 ka, respectively. Lateral accretion of the riverbed facies gravel sediments occurred during interglacial periods while vertical aggradations of the terrace sediments deposited predominantly under cold and dry glacial period. A thick layer of aeolian loess with a basal age about 35 ka indicates a remarkable drop of air temperature and a dry, cold climate. The temporal correlation between terrace formation and tectonic movement has not yet been established in this research, but the stratigraphic chronology of the terrace sections provides the timing of the terrace formation, the incision rate of the Yellow River, and the slip rate of the fault horizon.  相似文献   

12.
Raised marine terraces and submerged insular shelves are used through an integrated approach as markers of relative sea level changes along the flanks of the Salina volcanic island (Aeolian Arc, southern Italy) for the purpose of evaluating its crustal vertical deformation pattern through time. Paleo sea level positions are estimated for the terrace inner margins exposed subaerially at different elevations and the erosive shelf edges recognized offshore at different depths. Compared with the eustatic sea levels at the main highstands (for the terraces) and lowstands (for the shelf edges) derived from the literature, these paleo sea level markers allowed us to reconstruct the interplay among different processes shaping the flanks of the island and, in particular, to quantify the pattern, magnitudes and rates of vertical movements affecting the different sectors of Salina since the time of their formation. A uniform uplift process at rates of 0.35 m ka−1 during the Last Interglacial is estimated for Salina (extended to most of the Aeolian Arc) as evidence of a regional (tectonic) vertical deformation affecting the sub-volcanic basement in a subduction-related geodynamic context. Before that, a dominant subsidence at rates of 0.39–0.56 m ka−1 is instead suggested for the time interval between 465 ka (MIS 12) and the onset of the Last Interglacial (MIS 5.5, 124 ka). By matching the insular shelf edges with the main lowstands of the sea level curve, a relative age attribution is provided for the (mostly) submerged volcanic centres on which the deepest (and oldest) insular shelves were carved, with insights on the chronological development of the older stages of Salina and the early emergence of the island. The shift from subsidence to uplift at the Last Interglacial suggests a major geodynamic change and variation of the stress regime acting on the Aeolian sub-volcanic basement. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Fluvio‐lacustrine terraces along Phung Chu (river) on the central southern Tibetan Plateau indicate that a large palaeo‐dammed‐lake formerly existed in this area. Based on landscape survey, optically stimulated luminescence (OSL) dating and sedimentary analyses, this research shows that the Phung Chu was blocked and a dammed‐lake over 2500 km2 in size formed before 30 ka ago. OSL dating analysis suggests the fluvio‐lacustrine sediments were well bleached and yield accurate age estimates for two lake drainage events. The first drainage event took place after 30 ka, resulted in river incision and formed a high terrace at 50 m height from the present river level. The second drainage happened after 3.7 ka, resulted in further river incision and formed the second terrace at 25 m height from the present river level. According to the distribution of the fluvio‐lacustrine sediments, active normal faults (particularly the Kharta Fault) in this region and the high gradient slopes after Phung Chu enters the Yö Ri gorge, seismically‐induced landsliding is regarded as highly likely to have been the cause of river blockage and associated formation of a dammed‐lake, although glacial damming is also a possible cause. The volume of drainages from this dammed‐lake may have led to catastrophic flooding and analogous modern lakes represent significant geo‐hazard risks to down‐river human settlements. As dammed‐lakes are special phases in fluvial evolution, often involving river blockage, breakthrough and drastic catchment change, these processes can reveal how tectonic or climatic events modify landforms. However, such tectonic‐derived landform changes can also impact palaeo‐climate of the region. Thus this study has added new evidence regarding the evolutionary history of a dammed lake including its formation, duration, extent and final drainage, which is crucial for understanding its general landscape process mechanisms and for better assessing geo‐hazard risks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
以内蒙古锡林郭勒盟苏尼特右旗的察干淖尔盐湖为研究对象,利用OSL(Optically Stimulated Luminescence)测年技术和DEM(Digital Elevation Model)数字高程模型,重建湖面波动历史,探讨湖泊形成与环境变化过程.通过对察干淖尔盐湖周边大量的野外考察,发现湖泊周围存在海拔高程为1020、978和973 m的三级古湖岸阶地,其OSL测年结果分别为29.2±1.3、18.4±0.8及8.2 8.0 ka.通过湖岸阶地高程恢复的上述3个时期的古湖面积分别为3600、500和400 km~2.与现今的干旱盐湖景观迥然不同.  相似文献   

15.
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Activities of 26Al and 10Be in five chert clasts sampled from two beach ridges of late Pleistocene Lake Lisan, precursor of the Dead Sea in southern Israel, indicate low rates of chert bedrock erosion and complex exposure, burial, and by inference, transport histories. The chert clasts were derived from the Senonian Mishash Formation, a chert‐bearing chalk, which is widely exposed in the Nahal Zin drainage basin, the drainage system that supplied most of the material to the beach ridges. Simple exposure ages, assuming only exposure at the beach ridge sampling sites, range from 35 to 354 ky; using the ratio 26Al/10Be, total clast histories range from 0·46 to 4·3 My, unrelated to the clasts' current position and exposure period on the late Pleistocene beach ridges, 160–177 m below sea level. Optically stimulated luminescence dating of fine sediments from the same and nearby beach ridges yielded ages of 20·0 ± 1·4 ka and 36·1 ± 3·3 ka. These ages are supported by the degree of soil development on the beach ridges and correspond well with previously determined ages of Lake Lisan, which suggest that the lake reached its highest stand around 27 000 cal. years BP . If the clasts were exposed only once and than buried beyond the range of significant cosmogenic nuclide production, then the minimum initial exposure and the total burial times before delivery to the beach ridge are in the ranges 50–1300 ky and 390–3130 ky respectively. Alternatively, the initial cosmogenic dosing could have occurred during steady erosion of the source bedrock. Back calculating such rates of rock erosion suggests values between 0·4 and 12 m My?1. The relatively long burial periods indicate extended sediment storage as colluvium on slopes and/or as alluvial deposits in river terraces. Some clasts may have been stored for long periods in abandoned Pliocene and early Pleistocene routes of Nahal Zin to the Mediterranean before being transported again back into the Nahal Zin drainage system and washed on to the shores of Lake Lisan during the late Pleistocene. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The Bellinger River catchment in the New England Fold Belt on the mid‐north coast of New South Wales is characterized by an assemblage of stepped late Quaternary alluvial units. Late Pleistocene terraces were formed by large, more competent rivers that eroded almost entire valley floors; however, a decline in discharge prior to the Holocene has resulted in the abandonment of these deposits as elevated terraces or residual alluvium, onlapped by contemporary floodplains. Intrinsic controls on floodplain formation appear to be superimposed over an early–mid‐Holocene climatic signature. A fluvially active period, known as the Nambucca Phase, from 10 to 4·5 ka, eroded Late Pleistocene terraces. Two floodplain surfaces, one higher than the other, both started to accrete vertically from 4 ka but with some valley locations remaining vulnerable to episodes of erosion, resulting in substantial units of even younger basal alluvium. The high floodplain is dominated by horizontally laminated, vertically accreted sequences, while the low floodplain, which overlaps in age, is characterized by pronounced cut‐and‐fill stratigraphy. Terraces and floodplains in partly confined settings can have similar elevations but be polycyclic, with very different basal ages. In such landscapes the classical assumption that individual terrace or floodplain profiles along a valley represent periods of coeval formation is shown to be frequently invalid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene‐Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193 ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4–3) at a mean accumulation rate of 0·22 m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4–2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24 m/ka. This co‐accumulation indicates that gullies have been a long‐term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2 m/ka near the hills to 1–0·4 m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man‐made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Calcrete‐coated remnants of landslide debris and alluvial deposits are exposed along the presently stable hillslopes of the Soreq drainage, Judea Hills, Israel. These remnants indicate that a transition from landslide‐dominated terrain to dissolution‐controlled hillslope erosion had occurred. This transition possibly occurred due to the significant decrease in tectonic uplift during the late Cenozoic. The study area is characterized by sub‐humid Mediterranean climate. The drainage hillslopes are typically mantled by thick calcrete crusts overlying Upper Cretaceous marine carbonate rocks. Using TT‐OSL dating of aeolian quartz grains incorporated in the calcrete which cements an ancient landslide deposit, we conclude that incision of ~100 m occurred from 1056 ± 262 to 688 ± 86 ka due to ~0·3° westward tilt of the region; such incision invoked high frequency of landslide activity in the drainage. The ages of a younger landslide remnant, alluvial terrace, and alluvial fan, all situated only a few meters above the present level of the active streambed, range between 688 ± 86 ka and 244 ± 25 ka and indicate that since 688 ± 86 the Soreq base level had stabilized and that landslide activity decreased significantly by the middle Pleistocene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
昆黄运动是发生在中更新世时期青藏高原及其邻区一次重要的构造抬升事件,河流阶地及地层记录能够较好地反映这次构造事件。渭河陇西段第七级阶地沉积了104.5m厚的黄土,通过对其上覆黄土剖面的古地磁、粒度研究表明,此级阶地形成年代为距今870ka,阶地拔河高度说明自中更新世以来地面至少抬升了205m,其抬升速率约为0.2m/ka。这次构造事件在时间上与昆黄运动相一致,是对青藏高原强烈抬升的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号