首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Flood and vortex scour were observed in the Prosna channel (Central Poland) in the years 1980–1985. Flood scour increases the thickness of the reworked channel deposits by 30 per cent to 66 per cent, in relation to the thickness determined by the elevation of the normal bed and the bankfull stage. Vortex scour can increase the thickness by as much as 90–95 per cent. Knowledge of these properties of contemporary alluvium allows correct palaeohydrological and stratigraphic interpretation of the alluvial fills of valley floors.  相似文献   

2.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

3.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Along the lower reaches of the Waipaoa River, New Zealand, cross‐section survey data indicate there was a 23 per cent decrease in bankfull width and a 22 per cent reduction in channel cross‐section area between 1948 and 2000, as the channel responded to increased inputs of fine (suspended) sediment following deforestation of the headwaters in late C19 and early C20. We determined the bankfull discharge within a ~39 km long reach by routing known discharges through the one‐dimensional MIKE 11 flow model. The model runs suggest that the bankfull discharge varies between ~800 and ~2300 m3 s?1 and that the average recurrence interval is 4 ± 2 years on the annual maximum series; by contrast, the effective flow (360 m3 s?1) is equaled or exceeded three times a year. The variability in bankfull discharge arises because the banks tend to be lower in places where flood flows are constricted than in reaches where overbank flow is dispersed over a wide area, and because scour has counteracted aggradation in some locations. There is no downstream variation in Shields stress, or in relative shear stress, within the study reach. Bankfull shear stress is, on average, five times greater than the shear stress required to initiate motion. At the effective discharge it is more than twice the threshold value. The effective discharge probably has more relevance than the bankfull discharge to the overall picture of sediment movement in the lower reaches of the Waipaoa River but, because width is constrained by the stability and resistance of the bank material to erosion during high flows that also scour the bed, the overall channel geometry is likely determined by discharges at or near bankfull. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

6.
Field investigations that help clarify local sedimentary processes involved in the migration of alternate bars as a consequence of flood events are lacking. A simple approach combining scour chains, stratigraphy and frequent bathymetric surveys is proposed to connect the dynamics of free migrating alternate bars present in disconnected channels of large sandy‐gravelly rivers with their sedimentary products and vice versa. The results show that the spatial distribution of bars before a flood partly governs the scour and fill processes and that the sediment transport rates vary significantly on a single cross‐section. This can be due to preferential axes of the migration of the bars determined by their location on the cross‐section, the bank direction and the discharge. The approach allows the reconstruction of local sedimentary processes involved in alternate bar migration by combining maximum scour depths reached during a flood with frequent channel bed topography surveys and post‐flood stratigraphy. It is also possible to distinguish deposited and preserved sediments compared with sediments by‐passed during the flood. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

8.
Coarse woody debris and channel morphology were evaluated for five low-gradient streams that ranged from first to fourth order (0.7 to 55 km2 watershed area). Debris volumes were directly related to variations in bankfull width. Woody debris was associated with 65 to 75 per cent of all pools and the relative proportion of types of pools (i.e. plunge, lateral scour, etc.) varied with stream size. High variability in channel depths and widths was common. The results provide benchmark values of woody debris loadings and channel morphology for undisturbed coastal Alaskan stream systems.  相似文献   

9.
The main purpose of this study is to understand the stabilizing effect of ground-sills on the riverbed through a series of flume model experiments. From results, although check dams have the ability to control upstream sediment transport, the mass energy produced by the free fall of the overtopping discharge still causes strong local scour downstream of the structure, and this scour leads to the instability of the check dam. Therefore, this study conducted model experiments on various types of serial ground-sills to determine the appropriate spacing to best protect the downstream bed. Based on the observations and analysis of channel geomorphology and sedimentation, this study concluded the following results: 1) Serial ground-sills reduces the sediment transport ability perfectly, especially under a mild channel gradient equipped with 2 4 times the average channel width interval. But for steep slopes, it is suggested that the proper spacing should be shortened to 1 2 times the average channel width. 2) Ground-sills can effectively protect the streambed from scouring under a suitable equipped condition and the concepts of guiding scour and riverbed inertia were used in the analysis of optimal ground-sill spacing.  相似文献   

10.
11.
Local scour may occur when a hydraulic structure is positioned in a channel with an erodible bed. Herewith investigated experimentally are the erosion and flow pattern due to a water jet passing over a channel bed at the asymptotic (final) state. The development of the scour hole, its maximum scour depth and length, are recorded and compared with available scour-depth relations. Two sets of experiments (see Table 1) were carded out. Set 1 (3 runs) was concerned with measuring the vertical instantaneous velocity distribution in the scour hole. The scour hole at the asymptotic (final) state, t=100 [h] was investigated. Set 2 (5 runs) was concerned with studying the physics of scouring. Thescour hole at about mid-state, t≈0.5 [h], was investigated; subsequently the scour-hole depth was linearly extended on the semi-log scale to 72 [h]; no velocity measurements were performed. The present data are put in context with some (popular) existing relations; recommended is a modification of some of these relations。  相似文献   

12.
1INTRODUCTIONThesouthwesternregionoftheUnitedStates,includingSoutheastArizona,ischaracterizedbyasemiaridclimatewithhotsummers,mildwinters,andephemeralstreamsdrainingsparselyvegetatedareas.ChannelmorphologyoftheephemeralstreamsinSoutheastArizonaisinfluencedbybothlateralandverticalchannelchangesoccurringduringmajorfloods.Lateralchannelchangesoccurinthreewaysbankerosion,meandermigration,andchannelavulsion.Verticalchannelchangesinclude,beddegradationoraggradation,andmayoccurseparatelyorinco…  相似文献   

13.
The main purpose of this study is to understand the stabilizing effect of ground-sills on the riverbed through a series of flume model experiments.From results,although check dams have the ability to control upstream sediment transport,the mass energy produced by the free fall of the overtopping discharge still causes strong local scour downstream of the structure,and this Scour lcads to the instability of the check dam.Therefore,this study conducted model experiments on various types of serial ground-sills to determine the appropriate spacing to best protect the downstream bed.Based on the observations and analysis of channel geomorphology and sedimentation,this study concluded the following results:1)Serial ground-sills reduces the sediment transport ability perfectly,especially under a mild channel gradient equipped with 2-4 times the average channel width interval.But for steep slopes,it is suggested that the proper spacing should be shortened to 1-2 times the average channel width.2)Ground-sills can effectively protect the streambed from scouring under a suitable equipped condition and the concepts of guiding scour and riverbed inertia were used in the analysis of optimal ground-sill spacing.  相似文献   

14.
Changes in bed topography that build and maintain channel morphology are driven by the displacements of individual particles, either though their entrainment or deposition. However, the linkages between these topographic changes and individual grain displacements have not been comprehensively addressed, as many historical tracer studies have not included coincident topographic data. In this study, we compare the movements of bedload tracers to the differences in repeat topographic surveys across four gravel-bed river reaches. To do this, we apply a 1-D Bayesian survival process model to the starting and ending locations of tracers. This model estimates downstream trapping probabilities, which represent the likelihood that a given segment of channel will “trap” an entrained particle. We then adapt this model to estimate downstream trapping probabilities using digital elevation models of difference and compare the results. The estimates from the tracer and topographic trapping models showed general alignment, meaning that tracers were preferentially trapped in segments that experienced deposition along the channel. Thus, tracers in this study were able to identify downstream differences in bedload transport. The comparison also highlighted that tracer-estimated trapping probabilities were larger than topographically estimated ones. This supports previous observations that sediment travel distances estimated using tracers are shorter than those estimated using morphological methods. We find that the differences between these two estimates vary systematically across study environments. These variations are attributable to either study design (i.e., tracers being larger than the median size of the sediment that deforms the bed) or differences in compensating scour and fill. We explore potential causes for differences in compensating scour and fill, including hydrograph shape, sediment delivery regime, channel deformation style, and channel width, highlighting that morphodynamics needs to be considered in designing bedload tracer studies.  相似文献   

15.
Large woody debris (LWD) can have a significant impact upon local channel morphology by creating scour pools and zones of reduced shear stress in which sediment is deposited. It is important to predict scour depths associated with LWD, as it is becoming increasingly common for debris to be added into river channels to improve sediment retention and create pools for aquatic habitat. Engineered log‐jams should therefore be designed using factor of safety engineering analysis, which includes estimates of associated scour and deposition rates. However, the rate and total depth of scour associated with LWD have not been modelled comprehensively, with authors resorting to the use of generic local and constriction scour models to predict scour depths. Also, constriction scour models presented, to date, do not calculate the rate of scour development. In this paper a model is presented for predicting the rate and total depth of scour associated with a channel constriction. The model is one‐dimensional and is based upon the sediment continuity equation, the calculation of specific head changes through the constricted reach and also allows for a variable free surface elevation above the bed at the constriction. This model could be applied to any channel constriction problem but here is used to determine scour rates and depths associated with deflector‐type LWD jams. Deflector jams are one category of jam type presented in a debris jam classification scheme, in which jam type is a function of the ratio of average riparian tree height to average channel width. Deflector jams, as the name implies, partially block the flow and therefore act as a channel constriction, which results in constriction scour. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Few studies have precisely documented the response of stream channels to short-term flow variability. This paper examines the impact of sequential flows of various magnitudes on the morphology of a low-energy river in northeastern Illinois, U.S.A. Between June 1986 and November 1988 channel cross-sections were surveyed on a semiannual basis at 26 locations along a 7.2 km stretch of the Des Plaines River. During this period an estimated 100-year flood, several bankfull flows, and an extreme low flow associated with a severe drought occurred. The response of the river channel to each of these events was relatively minor. Mean changes for the reach were generally less than 3 per cent for mean depth and less than 1 per cent for width. Statistical analysis indicates that net changes in width and depth over the entire period were not significantly different from zero. This lack of geomorphic response is attributable to low stream power, low hydrologic variability, fine bed materials, and cohesive banks along this stretch of river. Although dramatic changes in channel morphology did not occur, subtleties in geomorphic response were observed that reflect the temporal ordering of hydrologic events.  相似文献   

17.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Dominant discharge may be defined as that discharge which transports most bed sediment in a stream that is close to steady-state conditions. The concept is examined in relation to two single thread gravel-bedded streams. One stream is alluvial and free to adjust its geometry whilst in the other, channel capacity and form are partially constrained by cohesive till-banks and a heavily compacted bed. The total quantity of bedload and its calibre were measured for every flood over a six year period, so that the relationship between the grain-size of bedload and the most effective discharge could be examined in the context of thresholds for channel change. The dominant discharge concept was applicable to the alluvial stream in that the bankfull value is an effective discharge for maintaining channel capacity. The concept applied less well to the ‘non-alluvial’ stream. Although in both streams the bankfull value was exceeded for less than 0.34 per cent of the time, overbank flows are important in instigating channel change. It is only during overbank flows that the largest bed material is entrained in quantity. For within-channel flows a threshold separates flows which winnow fine matrix from those which entrain the finer bed gravels. This threshold occurred at 60 per cent bankfull. It was concluded that the dominant discharge concept can be applied to streams close to steady-state which are alluvial, competent, and free to adjust their boundaries. An important proviso is that two channel-stability domains can be recognized. These domains represent channel maintenance and channel adjustment and are defined by intrinsic thresholds in the bed material entrainment function.  相似文献   

19.
Headcut formation and migration was sometimes mistaken as the result of overland flow, without realizing that the headcut was formed and being influenced by flow through soil pipes into the headcut. To determine the effects of the soil pipe and flow through a soil pipe on headcut migration in loessic soils, laboratory experiments were conducted under free drainage conditions and conditions of a perched water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 and 1 l min−1 at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response was the formation of a headcut that extended in depth until an equilibrium scour hole was established, at which time the headcut migrated upslope. Pipeflow caused erosion inside the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes and greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe, in addition to pipeflow, increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 min compared with free drainage conditions. This study confirmed that pipeflow dramatically accelerates headcut migration, especially under conditions of shallow perched water tables, and highlights the importance of understanding these processes in headcut migration processes. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Hydraulic modelling principles, together with a knowledge of channel pattern thresholds, allow the development of a small scale model of a gravel braided stream with flow characteristics and equivalent dimensions of a natural river. The forms and processes of natural gravel braided rivers are reproduced by imposing a constant flume discharge and slope, and maintaining approximate equilibrium with an adjustable sediment feed. Beginning from a straight trough, braiding is initiated by development of a series of alternating bars and scour pools which produce bends of increasing amplitude, leading finally to channel division. These lobate bars accrete downstream by deposition of bed material at their margins, often in the form of avalanche faces. Together with the scour pools with which they are necessarily closely associated, these bars are the fundamental elements of the channel pattern. Channel migration and division is a response to the development of bars, and these adjustments leave portions of the originally active bars in the form of exposed and eroded remnants. Complex flats built from these lobate forms show varying degrees of preservation of the original depositional units, but the model allows observation of the systematic construction of some flats. Sorting of sediment on active bars with avalanche faces shows a distinct fining downstream. This may be the result of the accretion of fining upwards avalanche faces along the bar margins rather than a ‘winnowing out’ of fine material. The processes and forms observed in the model appear to be very similar to those occurring in natural gravel braided streams during peak flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号