首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy, this paper presents an approach to simulate debris flow maximum run‐out. On the basis of the flow source areas and an average thickness of 1·2 m of the scarps, we estimated debris flow volumes of the order of 104 and 105 m3. Flow mobility ratios (ΔH/L) derived from the x, y, z coordinates of the lower‐most limit of the source areas (i.e. apex of the alluvial fan) and the distal limit of the flows ranged between 0·27 and 0·09. We performed regression analyses that showed a good correlation between the estimated flow volumes and mobility ratios. This paper presents a methodology for predicting maximum run‐out of future debris flow events, based on the developed empirical relationship. We implemented the equation that resulted from the calibration as a set of GIS macros written in Visual Basic for Applications (VBA) and running within ArcGIS. We carried out sensitivity analyses and observed that hazard mapping with this methodology should attempt to delineate hazard zones with a minimum horizontal resolution of 0·4 km. The developed procedure enables the rapid delineation of debris flow maximum extent within reasonable levels of uncertainty, it incorporates sensitivities and it facilitates hazard assessments via graphic user interfaces and with modest computing resources. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The quantification of debris‐flow hazard requires estimates of debris‐flow frequency and magnitude. Several methods have been proposed to determine the probable volume of future debris flows from a given basin, but most have neglected to account for debris recharge rates over time, which may lead to underestimation of debris‐flow volumes in basins with rare debris flows. This paper deals with the determination of debris recharge rates in debris‐flow channels based on knowledge of debris storage and the elapsed time since the last debris flow. Data are obtained from coastal British Columbia and a relation is obtained across a sample of basins with similar terrain and climatic conditions. For Rennell Sound on the west coast of the Queen Charlotte Islands, the power‐law relation for area‐normalized recharge rate, Rt, versus elapsed time, te was Rt = 0·23te?0·58 with an explained variance of 75 per cent. A difference in recharge rates may exist between creeks in logged and unlogged forested terrain. The power function for undisturbed terrain was Rt = 0·20te?0·49, while the function for logged areas was Rt = 0·30te?0·77. This result suggests that for the same elapsed time since the last debris flow, clearcut gullies tend to recharge at a slower rate than creeks in old growth forest. This finding requires verification, particularly for longer elapsed times since debris flow, but would have important implications for forest resource management in steep coastal terrain. This study demonstrates that commonly used encounter probability equations are inappropriate for recharge‐limited debris flow channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The Crimean Mountains (Ukraine) are renowned for the highest occurrence of debris flows along the northern coast of the Black Sea, but information on their origin, frequency and triggers is widely lacking. This study reconstructs a regional time series of debris flows in eight catchments located on the slopes above Yalta. Dendrogeomorphic analyses were performed on 1122 increment cores selected from 566 black pines (Pinus nigra ssp. pallasiana) with clear signs of external damage induced by past debris‐flow activity. The trees sampled were divided into old and young trees. The sample contains 361 young trees with post‐1930 innermost rings and 205 old trees with pre‐1930 germination dates. The two groups of trees were analyzed separately to identify possible age effects in the reconstructed debris‐flow series and to assess the ability of P. nigra to record geomorphic disturbances over time. We date a total of 215 debris flows back to ad 1701 and observe a mean decadal frequency of 6.9 events, with a peak in activity during the 1940s (20 events). The young trees record an increase in debris‐flow activity over the last 70 years, whereas the frequency of events remained fairly constant in the old trees for the same period. By contrast, the formation of reaction wood became increasingly scarce with increasing tree age whereas the occurrence of abrupt growth suppression increased. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The velocity and dynamic pressure of debris flows are critical determinants of the impact of these natural phenomena on infrastructure. Therefore, the prediction of these parameters is critical for hazard assessment and vulnerability analysis. We present here an approach to predict the velocity of debris flows on the basis of the energy line concept. First, we obtained empirically and field‐based estimates of debris flow peak discharge, mean velocity at peak discharge and velocity, at channel bends and within the fans of ten of the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy. We used this data to calibrate regression models that enable the prediction of velocity as a function of the vertical distance between the energy line and the surface. Despite the complexity in morphology and behaviour of these flows, the statistical fits were good and the debris flow velocities can be predicted with an associated uncertainty of less than 30% and less than 3 m s?1. We wrote code in Visual Basic for Applications (VBA) that runs within ArcGIS® to implement the results of these calibrations and enable the automatic production of velocity and dynamic pressure maps. The collected data and resulting empirical models constitute a realistic basis for more complex numerical modelling. In addition, the GIS implementation constitutes a useful decision‐support tool for real‐time hazard mitigation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Dendrogeomorphology was used to investigate past events on a cone affected by both debris flows and snow avalanches. We report on results of 520 cores from 251 injured Larix decidua Mill. and Picea abies (L.) Karst. trees sampled on the Birchbach cone (Swiss Alps). Detailed analysis of tree‐ring sequences allowed dating of 561 growth disturbances in individual trees for a 252 yr period, extending from 1750 to 2002, which could be attributed to 30 different event years. We then localized the position of rows of traumatic resin ducts (TRDs) within the tree ring so as to assess the intra‐seasonal position of damage. In agreement with data on the local growth period, TRDs located at the beginning of the new growth ring were considered the result of avalanche impacts that occurred during the dormant season or in earliest earlywood between late October and early May. In contrast, TRD found in late earlywood or within latewood were considered the result of periglacial debris‐flow activity, as these layers of the tree ring are locally formed between July and early October. For nine out of the 30 reconstructed event years, the intra‐seasonal timing of TRDs indicated that reactions must be the result of past snow avalanche activity. In 19 other event years, TRDs showed that damage has been caused between July and early October and, thus, through debris flows in the Birchbach torrent. Finally, the spatial patterns of trees showing reactions as a result of particular events were assessed so as to approximate the extent of past debris flows and snow avalanches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Construction of frequency–magnitude (F–M) relationships of debris floods and debris flows is challenging because of few direct observations, discontinuous event occurrence, loss of field evidence, the difficulty of accessing the sediment archive and the challenge of finding suitable statistical methods to analyse the dataset. Consultants often face budget limitations that prohibit application of the full gamut of absolute dating methods, stratigraphic analysis and analytical tools necessary to fully resolve the F–M legacy. In some cases, F–M curves are needed for watersheds without local information, or where obtaining this information is prohibitively expensive. For such watersheds, the F–M relationship may be estimated where several F–M curves have already been assembled in a specific region. Individual F–M curves are normalized by fan area or fan volume, then stratified by process type and geomorphic activity level. This paper describes the development of regional F–M curves for debris flows in southwestern British Columbia and debris flows and debris floods in the Bow River valley near Canmore, Alberta. We apply the regional relationships to other cases in Canada and the United States and demonstrate that the method can be globalized. The regional approach is compared to cases where detailed F–M relationships have been established by other means. Strong negative deviations from the regional debris-flow or debris-flood magnitude trends could signal inherent watershed stability, while strong positive deviations could signal extraordinary landslide processes, or suggest that the fan may be largely of paraglacial origin. We highlight some of these outlying cases and develop a method whereby the regional curves can be meaningfully adjusted, or reliance can be placed on lower or upper confidence bounds of the F–M curves. We caution against the indiscriminate use of the regionally based F–M curves, especially in watersheds where multiple geomorphic processes are active. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
The dynamics and the surface evolution of a post‐LGM debris‐flow‐dominated alluvial fan (Tartano alluvial fan), which lies on the floor of an alpine valley (Valtellina, Northern Italy), have been investigated by means of an integrated study comprising geomorphological field work, a sedimentological study, photointerpretation, quantitative geomorphology, analysis of ancient to modern cartography and consultation of historical documents and records. The fan catchment meteoclimatic, geological and geomorphological characteristics result in fast rates of geomorphic reorganization of the fan surface (2 km2). The dynamics of the fan are determined by the alternation of low‐return period catastrophic alluvial events dominated by non‐cohesive debris flows triggered by extreme rainstorms which caused aggradation and steepening of the fan and avulsion of its main channel, with periods of low to moderate streamflow discharge punctuated by low‐ to intermediate‐magnitude flood events, causing slower but steady topographic reworking. The most ancient parts of the fan surface date back at least to the first half of the 19th century, but most of the fan surface has been restructured after 1911, mainly during the debris‐flow‐dominated events of 1911 and 1987. Phases of rapid fan toe incision and fan degradation have been recognized; since the 1930s or 1940s, the Tartano fan has been subjected to a state of deep entrenchment and narrowing of the main trunk channel and distributary area. Post‐Little Ice Age climate change and present‐day surface uplift rates have been considered as possible explanations for the observed geomorphic evolution, but tectonic or climatic controls cannot account for the order of magnitude of the erosional pace. Anthropogenic controls plausibly override the natural ones: in particular, the building of a dam in the late 1920s, about 2 km upstream of the fan, seems to have triggered fan dissection, having altered the sediment discharge through sediment retention. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The evolution of a debris‐flow cone depends on a multitude of factors in the hydrogeomorphic system. Investigations of debris‐flow history and cone dynamics in highly active catchments therefore require an integrative approach with a temporal and spatial resolution appropriate for the goals of the study. We present the use of an orthophoto time series to augment standard dendrogeomorphic techniques to describe the spatio‐temporal dynamics of debris flows on a highly active cone in the western Austrian Alps. Analysis of seven orthophotos since 1951 revealed a migration of active deposition areas with a resulting severe loss of forest cover (> 80%) and a mean tree loss per year of 10·4 (range 1·3–16·6 trees per year). Analysis of 193 Pinus mugo ssp. uncinata trees allowed the identification of 161 growth disturbances corresponding to 16 debris flows since 1839 and an average decadal frequency of 0·9 events. As a result of the severe loss of forest cover, we speculate that < 20% of the more recent events were actually captured in the tree‐ring record, giving a decadal return interval of ~7·5 events for a period of 60 years. Based on three annual field observations, it is evident that this catchment (the Bärenrüfe) produces very frequent (< 1 yr), small (in the order of a few 10 to 100 m3) debris flows with minor material relocation. The specific challenges of tree‐ring analysis in this tree species and in highly active environments are explicitly addressed in the discussion and underline the necessity of employing complementary methods of analysis in an integrative manner. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Debris flows generated from landslides are common processes and represent a severe hazard in mountain regions due to their high mobility and impact energy. We investigate the dynamics and the rheological properties of a 90 000 m3 debris‐flow event triggered by a rapid regressive landslide with high water content. Field evidence revealed a maximum flow depth of 7–8 m, with an estimated peak discharge of 350–400 m3 s?1. Depositional evidence and grain‐size distribution of the debris pose the debris flow in an intermediate condition between the fluid‐mud and grain‐flow behaviour. The debris‐flow material has silt–clay content up to 15 per cent. The rheological behaviour of the finer matrix was directly assessed with the ball measuring system. The measurements, performed on two samples at 45–63 per cent in sediment concentration by volume, gave values of 3·5–577 Pa for the yield strength, and 0·6–27·9 Pa s for the viscosity. Based on field evidence, we have empirically estimated the yield strength and viscosity ranging between 4000 ± 200 Pa, and 108–134 Pa s, respectively. We used the Flo‐2D code to replicate the debris‐flow event. We applied the model with rheological properties estimated by means of direct measurements and back‐analyses. The results of these models show that the rheological behaviour of a debris‐flow mass containing coarse clasts can not be assessed solely on the contribution of the finer matrix and thus neglecting the effects of direct grain contacts. For debris flows composed by a significant number of coarse clasts a back‐analysis estimation of the rheological parameters is necessary to replicate satisfactorily the depositional extent of debris flows. In these cases, the back‐estimated coefficients do not adequately describe the rheological properties of the debris flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes and analyses a hillslope–channel slope failure event that occurred at Wet Swine Gill, Lake District, northern England. This comprised a hillslope slide (180 m3, c. 203 ± 36 t), which coupled with the adjacent stream, resulting in a channelized debris flow and fluvial flood. The timing of the event is constrained between January and March 2002. The hillslope failure occurred in response to a rainfall/snowmelt trigger, on ground recently disturbed by a heather moorland fire and modified by artificial drainage. Slide and flow dynamics are estimated using reconstructed velocity and discharge values along the sediment transfer path. There is a rapid downstream reduction in both maximum velocity, from 9·8 to 1·3 m s?1; and maximum discharge, ranging from 33·5 to 2·4 m3 s?1. A volumetric sediment budget quantified a high degree of coupling between the hillslope and immediate channel (~92%: 167 m3), but virtually all of the sediment was retained in the first‐order tributary channel. Approximately 44% (81 m3) of the slide volume was retained in the run‐up deposit, and termination of the debris flow prior to the main river meant that the remainder did not discharge into the fluvial system downstream. These results suggest poor transmission of sediment to the main river at the time of the event, but importantly an increase in available material for post‐event sediment transfer processes within the small upland tributary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
In Carrara marble basins, the long and intensive quarrying activities (which began in the first century BC ) have produced extensive dump deposits, locally known as ravaneti. Ravaneti are of such large dimensions and diffusion as to make them a widespread landform of the Apuane Alps (Tuscany). In recent years these quarry dump deposits have been affected by frequent debris flows, more than 50 in 1996/97. This phenomenon is the most significant currently active geomorphological process in this landscape. The evolution of quarrying techniques produced a variety of sedimentological compositions of ravaneti. The debris flows analysed involve only the surface layers where debris is mixed with fine material with a lower permeability (active ravaneti) than the coarser underlying debris (older ravaneti). The presence of different permeability layers causes a wetting front to move downwards. Source area observations indicate a soil slip movement in the initial phases of the failure. The transformation of landslides into debris flow occurs by means of both soil contractive failure and an increase of granular temperature. The morphological and sedimentological analyses of depositional lobes resulted in a classification of three types of lobe, based on fabric–morphometry relationships allowing the identification of different flow dynamics: (1) type A lobe (platy form), matrix‐supported and well developed fabric with general tendency of ab clast plane strikes to lie generally parallel to flow direction as a consequence of laminar flow; (2) type B lobe (elongated form), clast‐supported and random fabric as a consequence of both turbulent flow and coarser composition of starting material; (3) type C lobe, intermediate type A–B morphometry, tendency for ab clast plane to lie in a semi‐circle around the main flow direction determined by the presence of secondary flow lines divergent from it in the stopping phase. In Carrara marble basins, the anomalous frequency with which debris flows tend to be triggered by medium‐intensity rainstorms (about 30 mm h−1 rainfall) is due to the recent increases in silt dump produced by modern quarrying techniques. This represents a significant example of debris flows as an environmental problem in major anthromorphized landscapes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Talus slopes are common places for debris storage in high-mountain environments and form an important step in the alpine sediment cascade. To understand slope instabilities and sediment transfers, detailed investigations of talus slope geomorphology are needed. Therefore, this study presents a detailed analysis of a talus slope on Col du Sanetsch (Swiss Alps), which is investigated at multiple time scales using high-resolution topographic (HRT) surveys and historical aerial photographs. HRT surveys were collected during three consecutive summers (2017–2019), using uncrewed aerial vehicle (UAV) and terrestrial laser scanning (TLS) measurements. To date, very few studies exist that use HRT methods on talus slopes, especially to the extent of our study area (2 km2). Data acquisition from ground control and in situ field observations is challenging on a talus slope due to the steep terrain (30–37°) and high surface roughness. This results in a poor spatial distribution of ground control points (GCPs), causing unwanted deformation of up to 2 m in the gathered UAV-derived HRT data. The co-alignment of UAV imagery from different survey dates improved this deformation significantly, as validated by the TLS data. Sediment transfer is dominated by small-scale but widespread snow push processes. Pre-existing debris flow channels are prone to erosion and redeposition of material within the channel. A debris flow event of high magnitude occurred in the summer of 2019, as a result of several convective thunderstorms. While low-magnitude (<5,000 m3) debris flow events are frequent throughout the historical record with a return period of 10–20 years, this 2019 event exceeded all historical debris flow events since 1946 in both extent and volume. Future climate predictions show an increase of such intense precipitation events in the region, potentially altering the frequency of debris flows in the study area and changing the dominant geomorphic process which are active on such talus slopes. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
The Whangaehu fan is the youngest sedimentary component on the eastern ring plain surrounding Ruapehu volcano. Fan history comprises constructional (830–200 years bp) and dissectional (<200 years bp) phases. The constructional phase includes four aggradational periods associated with both syneruptive and inter-eruptive behavior. All four aggradational periods began when deposition by large lahars changed flow conditions on the fan from channelized to unchannelized. Subsequent behavior was a function of the rate of sediment influx to the fan. The rate of sediment influx, in turn, was controlled by frequency and magnitude of volcanic eruptions, short-term climate change, and the amount of sediment stored on the volcano flanks. Fanwide aggradation occurred when rates of sediment influx and deposition on the fan were high enough to maintaìn unchannelized flow conditions on the fan surface. Maintenance of an undissected surface required sedimentation from frequent and large lahars that prevented major dissection between events. These conditions were best met during major eruptive episodes when high frequency and magnitude eruptions blanketed the volcano flanks with tephra and rates of lahar initiation were high. During major eruptive episodes, volcanism is the primary control on sedimentation. Climatic variations do not influence sediment accumulation. Local aggradation occurred when lahars were too small to maintain unchannelized flow across the entire fan. In this case, only the major channel system received much sediment following the deposition from the initial lahar. This localized aggradation occurred if (1) the sediment reservoir on the flank was large enough for floods to bulk into debris flows and (2) sedimentation events were frequent enough to maintain sediment supply to only some parts of the fan. These conditions were met during both minor eruptive and inter-eruptive episodes. In both cases, a large sediment reservoir remained on the volcano flanks from previous major eruptive intervals. Periods of increased storm activity produced floods that bulked to relatively small debris flows. When the sediment reservoir was depleted, the fan entered the present dissectional phase. Syneruptive and noneruptive lahars are mostly channelized and sediment bypasses the fan. Fan deposits are rapidly reworked. This is the present case at Ruapehu, even though the volcano is in a minor eruptive episode and the climate favors generation of intense storm floods.  相似文献   

15.
The flooding susceptibility of alluvial fans in the Southern Apennines has long been neglected. To partly address this oversight, we focus on the region of Campania which contains highly urbanized piedmont areas particularly vulnerable to flooding. Our findings are based on stratigraphic analysis of the fans and morphometric analysis of the basin‐fan systems. Using geomorphological analysis we recognized active alluvial fans while stratigraphic analysis together with statistical analysis of the morphometric variables was used to classify the fans in terms of the transport process involved. The results indicate that in the geological context examined, the best discrimination between debris flow (Df) and water flood (Wf) processes is achieved by means of two related variables, one for the basin (feeder channel inclination, Cg) and one for the fan (fan length, Fl). The probability that an unclassified fan belongs to group Wf is computed by applying a logistic function in which a P value exceeding 0.5 indicates that a basin/fan system belongs to group Wf. This important result led to the classification of the entire basin/fan system data. As regards process intensity, debris flow‐dominated fans are susceptible to the occurrence of flows with high viscosity and hence subject to more severe events than water flood‐dominated fans. Bearing this in mind, the data gathered in this study allow us to detect where alluvial fan flooding might occur and give information on the different degrees of susceptibility at a regional scale. Regrettably, urban development in recent decades has failed to take the presence of such alluvial fans into account due to the long recurrence time (50–100 years) between floods. This paper outlines the distribution of such susceptibility scenarios throughout the region, thereby constituting an initial step to implementing alluvial fan flooding control and mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In May 2003, a breach in a large irrigation ditch within Rocky Mountain National Park (RMNP) initiated a debris flow that entered Lulu Creek and the Colorado River, where 36 000 m3 of sediment substantially altered channel forms and processes. We present a proof of concept to understand whether the 2003 disturbance is within the historical range of variability (HRV), and whether the recovery potential of the system is sufficient to adapt to the disturbance. Flow and sediment regimes, and channel morphology and stability were monitored on Lulu Creek and the Colorado River from 2004 to 2011. Dominant channel response following the debris flow within Lulu Creek included step development, bed armoring, and channel widening. Step height‐to‐length ratios (H/L) for three reaches on Lulu Creek are outside the HRV of reference channels, with one reach approaching reference conditions. Erosion of approximately 23% of the debris fan volume occurred as a result of the long duration 2011 peak flow. Sediment within the Lulu Creek fan will persist for ~30–190 years, assuming current maximum and mean removal rates. Planform changes on the Colorado River since the debris flow include an increase in single‐thread geometries, with braided reaches where bar deposition occurred. Bedload transport and grain‐size analysis of bedload indicate translational spreading of a sand wave front with a dispersive component in steeper reaches. Lulu Creek is returning to a condition of natural variability, but the Colorado River is outside the HRV expected for steep‐gradient, pool‐riffle channels. Applying HRV to a situation where management questions require a longer term perspective, and pre‐disturbance baseline data are limited, is a useful approach. The HRV analysis facilitates a better understanding of site variability and delineates the range of possibilities of channel form and process to achieve management goals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Field studies that investigate sediment transport between debris-flow-producing headwaters and rivers are uncommon, particularly in forested settings, where debris flows are infrequent and opportunities for collecting data are limited. This study quantifies the volume and composition of sediment deposited in the arterial channel network of a 14-km2 catchment (Washington Creek) that connects small, burned and debris-flow-producing headwaters (<1 km2) with the Ovens River in SE Australia. We construct a sediment budget by combining new data on deposition with a sediment delivery model for post-fire debris flows. Data on deposits were plotted alongside the slope–area curve to examine links between processes, catchment morphometry and geomorphic process domains. The results show that large deposits are concentrated in the proximity of three major channel junctions, which correspond to breaks in channel slope. Hyperconcentrated flows are more prominent towards the catchment outlet, where the slope–area curve indicates a transition from debris flow to fluvial domains. This shift corresponds to a change in efficiency of the flow, determined from the ratio of median grain size to channel slope. Our sediment budget suggests a total sediment efflux from Washington Creek catchment of 61 × 103 m3. There are similar contributions from hillslopes (43 ± 14 × 103 m3), first to third stream order channel (35 ± 12 × 103 m3) and the arterial fourth to fifth stream order channel (31 ± 17 × 103 m3) to the total volume of erosion. Deposition (39 ± 17 × 103 m3) within the arterial channel was higher than erosion (31 ± 17 × 103 m3), which means a net sediment gain of about 8 × 103 m3 in the arterial channel. The ratio of total deposition to total erosion was 0.44. For fines <63 μm, this ratio was much smaller (0.11), which means that fines are preferentially exported. This has important implications for suspended sediment and water quality in downstream rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
稀性泥石流的平均运动速度研究   总被引:1,自引:0,他引:1  
余斌 《地震学刊》2009,(5):541-548
泥石流的运动速度是泥石流动力学研究中最重要的参数。稀性泥石流是常见也是危害较大的泥石流类型,准确而简洁地计算稀性泥石流的运动速度非常重要。现有的稀性泥石流平均速度经验公式,在使用上和适用地区上还存在一些问题。本文通过分析一系列稀性泥石流观测资料中的体积浓度与稀性泥石流的运动速度和阻力特征的关系,得出了一个新的计算稀性泥石流平均运动速度的经验公式,该公式能适应各种类型的泥石流沟,适用于一般急流的稀性泥石流;对于缓流稀性泥石流,计算值与观测值相比偏大,但很接近;不适用于缓慢稀性泥石流。本文提出的经验公式,使用简洁,计算稳定,与其他方法计算的稀性泥石流平均运动速度很接近。该速度计算经验公式也适用于稀性泥石流堆积扇上游沟道,但对于堆积扇上的速度,计算值偏大,且越往堆积扇的下游,偏差越大。  相似文献   

19.
Due to their potentially long runout, debris flows are a major hazard and an important geomorphic process in mountainous environments. Understanding runout is therefore essential to minimize risk in the near-term and interpret the pace and pattern of debris flow erosion and deposition over geomorphic timescales. Many debris flows occur in forested landscapes where they mobilize large volumes of large woody debris (LWD) in addition to sediment, but few studies have quantitatively documented the effects of LWD on runout. Here, we analyze recent and historic debris flows in southeast Alaska, a mountainous, forested system with minimal human alteration. Sixteen debris flows near Sitka triggered on August 18, 2015 or more recently had volumes of 80 to 25 000 m3 and limited mobility compared to a global compilation of similarly-sized debris flows. Their deposits inundated 31% of the planimetric area, and their runout lengths were 48% of that predicted by the global dataset. Depositional slopes were 6°–26°, and mobility index, defined as the ratio of horizontal runout to vertical elevation change, ranged from 1.2 to 3, further indicating low mobility. In the broader southeast Alaskan region consisting of Chichagof and Baranof Islands, remote sensing-based analysis of 1061 historic debris flows showed that mobility index decreased from 2.3–2.5 to 1.4–1.8 as average forest age increased from 0 to 416 years. We therefore interpret that the presence of LWD within a debris flow and standing trees, stumps, and logs in the deposition zone inhibit runout, primarily through granular phenomena such as jamming due to force chains. Calibration of debris flow runout models should therefore incorporate the ecologic as well as geologic setting, and feedbacks between debris flows and vegetation likely control the transport of sediment and organic material through steep, forested catchments over geomorphic time. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Debris flow is one of the dominant processes distributing large wood (LW) within mountainous catchments. However, little has been reviewed on wood-laden debris flow (WLDF), presumably owing to limited reviewable works. This article, therefore, navigates the international readers through 40 years of WLDF studies, most of which have been published only in Japanese. Firstly, we reviewed the historical development of Japanese WLDF particularly focusing on the 1980s and the 1990s. A series of post-disaster fieldworks from the July 1982 Nagasaki flood to the July 1990 Kumamoto flood provided 32 catchment-scale wood budgeting data; empirical relationships among drainage area, dominant tree species, sediment yield, and wood loads associated with single debris flow disasters were illustrated. Secondly, the characteristics of WLDF were summarized based on relevant previous studies on the recruitment, transport, and deposition processes of LW during debris flows. Thirdly, we discussed the connectivity between those Japanese WLDF studies and international LW studies by relating/contrasting their research approaches and spatiotemporal scales. In contrast to global LW research trends, Japanese WLDF studies have almost exclusively regarded LW as hazardous materials (i.e., “driftwood” or “woody debris”) that need to be retained upstream of the inhabited areas. Those practice-oriented WLDF studies were concentrated on drainage areas of 10−2 to 100 km2, representing 1–6 orders of magnitude smaller spatial scales than those generally covered by existing international LW studies. Strongly motivated by engineering requirements, “dynamic” interactions between debris flows and LW during floods have also been physically presented, mainly based on unique laboratory experiments involving steep flume (> 0.05) and mobile bed conditions. Finally, some future works for WLDF were briefly stated from practical and scientific perspectives. By “rediscovering” those WLDF studies domestically developed in Japanese debris flow channels since the 1980s, a more comprehensive understanding of LW dynamics in the river system may be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号