首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phanerozoic strata are distributed in several north-south trending zones in the central part of the Changning-Menglian Belt. Four types of Devonian to Triassic stratigraphic successions can be identified: (1) elastics with limestone lenses in the mid-section, changing up-section into alternations of fine elastics and cherts; (2) elastics with chert intercalations and limestone lenses, and topped by Permian basic volcanics; (3) elastics-basic volcanics-carbonates-clastics; and (4) limestones, dolomitic limestones-dark gray thin-bedded limestones, argillaceous limestones, mudstones and siliceous mudstones. Devonian to Triassic cherts occur in different horizons and different zones from east to west. These cherts are usually transitional to their neighboring elastics. There is no continuous Devonian to Middle Triassic chert sequence in the central zone of the Changning-Menglian Belt as Liu et al. (1991,1993) reported. Volcanics and the overlying carbonates described by some workers as "seamount" sequences  相似文献   

2.
滇西昌宁─孟连带南部地层地质问题   总被引:1,自引:1,他引:1  
滇西孟连以南,整合于南段组浊积岩之上的拉巴群硅质岩含晚二叠世早期放射虫化石,南段组时代不仅限于石炭纪,可能延入二叠纪。二者为晚古生代思茅地块的外陆坡沉积。其西面的南基河杂岩(新名)由层序混乱的晚古生代硅质岩、泥岩和少量砂岩、玄武岩构成。放射虫化石证据表明,硅质岩时代不仅限于晚泥盆世-早二叠世,还延入晚二叠世,而有的砂岩时代为早石炭世,它们是经过强烈构造变动的古特提斯洋的沉积记录。昌宁-孟连带向南可能延至泰国北部的清迈带,而非东北部的难河带。  相似文献   

3.
滇西昌宁─孟连带南部地层地质问题   总被引:4,自引:2,他引:4  
吴浩若  杜越 《地层学杂志》1994,18(3):221-227
滇西孟连以南,整合于南段组浊积岩之上的拉巴群硅质岩含晚二叠世早期放射虫化石,南段组时代不仅限于石炭纪,可能延入二叠纪。二者为晚古生代思茅地块的外陆坡沉积。其西面的南基河杂岩(新名)由层序混乱的晚古生代硅质岩、泥岩和少量砂岩、玄武岩构成。放射虫化石证据表明,硅质岩时代不仅限于晚泥盆世-早二叠世,还延入晚二叠世,而有的砂岩时代为早石炭世,它们是经过强烈构造变动的古特提斯洋的沉积记录。昌宁-孟连带向南可能延至泰国北部的清迈带,而非东北部的难河带。  相似文献   

4.
The Maggol Limestone of Ordovician age was deposited in the Taebaeksan (Taebacksan) Basin which occupies the northeastern flank of the Okcheon (Ogcheon) Belt of South Korea. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates in the early Middle Ordovician (earliest Darriwilian). Elsewhere this subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk-Tippecanoe sequence boundary beneath the Middle Ordovician succession and its equivalents, most in notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second- or third-order eustatic sea level fall during the early Middle Ordovician. The Sauk-Tippecanoe sequence boundary in South Korea, however, appears to be a discrete marine-flooding surface in the upper Maggol Limestone. Strata beneath this surface represent by a thinning-upward stack of exposure-capped tidal flat-dominated cycles that are closely associated with multiple occurrences of paleokarst-related solution-collapse breccias. This marine-flooding surface is onlapped by a thick succession of thin-bedded micritic limestone that is eventually overlain by a Middle Ordovician condensed section. This physical stratigraphic relationship suggest that second- and third-order eustatic sea level fall may have been significantly tempered by regional tectonic subsidence near the end of Maggol deposition. The tectonic subsidence is also evidenced by the occurrence of coeval off-platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e., the Yemi Breccia) in the basin. With continued tectonic subsidence, a subsequent rise in the eustatic cycle caused drowning and deep flooding of the carbonate platform, forming a discrete marine-flooding surface that may be referred to as a drowning unconformity. This tectonic interpretation contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously suggested. Thus, it is proposed that the Taebaeksan Basin in the northeastern flank on the Okcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician.  相似文献   

5.
《Gondwana Research》2006,9(4):511-528
The Maggol Limestone of Ordovician age was deposited in the Taebaeksan (Taebacksan) Basin which occupies the northeastern flank of the Okcheon (Ogcheon) Belt of South Korea. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates in the early Middle Ordovician (earliest Darriwilian). Elsewhere this subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk-Tippecanoe sequence boundary beneath the Middle Ordovician succession and its equivalents, most in notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second- or third-order eustatic sea level fall during the early Middle Ordovician. The Sauk-Tippecanoe sequence boundary in South Korea, however, appears to be a discrete marine-flooding surface in the upper Maggol Limestone. Strata beneath this surface represent by a thinning-upward stack of exposure-capped tidal flat-dominated cycles that are closely associated with multiple occurrences of paleokarst-related solution-collapse breccias. This marine-flooding surface is onlapped by a thick succession of thin-bedded micritic limestone that is eventually overlain by a Middle Ordovician condensed section. This physical stratigraphic relationship suggest that second- and third-order eustatic sea level fall may have been significantly tempered by regional tectonic subsidence near the end of Maggol deposition. The tectonic subsidence is also evidenced by the occurrence of coeval off-platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e., the Yemi Breccia) in the basin. With continued tectonic subsidence, a subsequent rise in the eustatic cycle caused drowning and deep flooding of the carbonate platform, forming a discrete marine-flooding surface that may be referred to as a drowning unconformity. This tectonic interpretation contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously suggested. Thus, it is proposed that the Taebaeksan Basin in the northeastern flank on the Okcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician.  相似文献   

6.
The Upper Paleozoic preflysch sedimentary rocks in the Türkstan-Alay ranges are combined in a common section with limestone of autochthon and synsedimentation carbonate nappes, thus forming the upper-most layers of the stratigraphic section of the latter. By their lithology, relatively small thickness, facies variability, and position at the boundary between carbonate and flysch-olistostrome sequences (in the autochthon), these rocks correspond to a certain extent to preflysch of the Urals and the Mediterranean Alpine Belt. This association of clayey, carbonate, and terrigenous rocks is strictly constrained in stratigraphy (the upper portion of the lower Moscovian substage and the lower portion of the upper Moscovian substage) and localization (the southern slopes of carbonate platforms). The formation of this rock association immediately predated the Late Paleozoic overthrusting and deposition of terrigenous flysch. In paleotectonic terms, preflysch is an indicator of the initial stage of tectonic and magmatic activation that led to the replacement of carbonate sedimentation with deposition of terrigenous and clayey sediments, coeval volcanism, and stratiform ore formation. The following sequence of events has been outlined in the Early and Middle Carboniferous: (1) thrusting of volcanic-sedimentary rocks filling troughs over the northern margins of carbonate platforms, (2) lateritic weathering and deposition of marine bauxite in the Bashkirian and early Moscovian, (3) repeated overthrusting and deposition of preflysch on southern slopes of platforms, (4) invasion of the frontal flysch trough from the south, (5) scouring of preflysch and the underlying limestone, and (6) formation of flysch-olistostrome sequences and tectonic and gravity nappes in the late Moscovian time. This interpretation takes into account the southward vergence of thrust sheets and nappes, the structure and localization of allochthonous fragments of marginal zones of carbonate platforms, and the pre-Bashkirian thrusting of volcanic and sedimentary rocks over the condensed pelagic deposits of the Shalan Group. It is suggested that bauxite and preflysch materials had the same source and were deposited in the Middle Carboniferous on the offshore carbonate shoals.  相似文献   

7.
虽然在滇西昌宁-孟连带内发现了泥盆纪至中三叠世的放射虫硅质岩,但是目前对其构造古地理意义仍然有争议。对昌宁-孟连带晚石炭世至早二叠世碳酸盐岩地层内鲕粒灰岩进行了研究,结果表明,该套碳酸盐岩形成于动荡浅水沉积环境,其成因可能与古特提斯洋内碳酸盐岩洋岛海山有关,并且反映了温暖、较为干燥的古气候背景。根据地质背景资料分析,它们应该形成于南亚热带较干燥的气候环境。与东西两侧同期地层形成的古气候背景对比发现,在石炭纪-二叠纪时,昌宁-孟连带是分隔滨冈瓦纳地块群和华夏地块群的主支洋盆;在早二叠世时,该洋盆宽度约10°古纬距。  相似文献   

8.
The study area is located in Kawakami-cho, Okayama Prefecture, which is occupied by Lower Carboniferous to Middle Permian Ko-yama Limestone Group (Yokoyama et al., 1979), Permian Yoshii Group (Sano et al., 1987) and Triassic Nariwa Group (Tera-oka, 1959). The Nariwa Group unconformably covers the Paleozoic successions (Otoh, 1985). These succes-sions belong to the Akiyoshi Belt. The Ko-yama Limestone Group is composed mainly of massive limestone, with basic volcanic rocks, acidic tuff and chert. The group was dated by foraminifer and fusu-linid as Lower Carboniferous to Middle Permian (Yo-koyama et al., 1979).  相似文献   

9.
湘西王村剖面寒武系花桥组浊积岩特征及其大地构造意义   总被引:5,自引:1,他引:5  
湘西王村地区的寒武系代表江南斜坡相沉积序列,传统的下寒武统划分为杷榔组、清虚洞组;中寒武统划分为敖溪组、花桥组(下部);上寒武统划分为花桥组(上部)、追屯组。其中,花桥组中浊流沉积发育,可识别出7次规模较大的浊流活动期,第一期浊积岩包括69个浊积序列,分别归属于11个副层序;第二期浊积岩包括37个浊积序列,分别归属于7个副层序。每个副层序的下部表现为近源浊积岩,上部表现为远源浊积岩,所代表的海水深度变化由浅变深。第一期浊流活动发生在海平面上升时期,形成三级层序的海侵体系域;第二期浊流活动发生在海平面较低、斜坡较陡时期,形成三级层序的低水位体系域。江南斜坡带中—上寒武世浊积岩频繁出现反映台地边缘深大断裂周期性活动强,断裂两盘升降差异运动显著。  相似文献   

10.
The location of the Palaeo-tethys suture in Tibet has been in great dispute for past two decades. The Longmucuo-Shuanghu suture has long been considered as the Palaeo-tethys in Tibet. Restudy of the Carboniferous and Permian sequences in the north and south of this suture reveal that: (1) the Carboniferous and Permian se-quence of the North Qiangtang Block is characterized by containing compound corals and intact fusulinids zones from Moscovian Fusulinella, Fusulina to Changhsingian Palaeofusulina zones; (2) the Early Permian of the South Qiangtang Block is dominated by diamictites and the Middle Permian carbonates found there may deposit on the oceanic seamount.  相似文献   

11.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

12.
In the Shoalhaven River Gorge, in the eastern Lachlan Fold Belt, the Ordovician quartz‐turbidite succession (Adaminaby Group) is affected by one major phase of deformation with northerly trending, gently plunging, upright, close to tight folds (F1) characterised by a range in half wavelengths up to 3 km. Several anticlinoria and synclinoria are developed and folds occur in at least four orders; these characteristics are consistent with buckling occurring at several scales and are controlled by the thickness of competent units in the multilayered succession. F1 folding is thick‐skinned in style with the whole crust probably having been affected by deformation. D1 occurred during the Silurian to Middle Devonian interval and was associated with crustal thickening and the shallowing of depositional environments over time. Locally, F1 is overprinted by south‐southeast‐trending, steeply to moderately inclined F2 that reorients F1 to recumbent attitudes. D2 is of Early to Middle Carboniferous age. Both deformations are related to convergence in an intra‐arc to backarc region and occurred inboard of a subduction zone, remnants of which occur in the New England Fold Belt.  相似文献   

13.
古海山是缝合带的关键组成部分,中亚造山带西段的天山造山带内已发现多处古海山,而北山地区却鲜有报道,古海山的发现可以弥补该地区海山研究的不足.通过在北山中部野马泉开展地质调查、测制剖面,发现了一套原始层序完整、以玄武岩、玄武质凝灰岩和大理岩为主的地层,具有火山岩基座和碳酸盐岩顶盖的结构,二者原始接触关系为整合接触,符合海山的沉积特征.依据地层中的岩石组合和沉积构造,确定其形成于海山斜坡相.野马泉古海山残骸呈NWW-SEE向延伸,东南部更接近海山顶.该海山中的玄武岩富集大离子亲石元素、亏损高场强元素,具有岛弧玄武岩的特征.该海山为洋内弧型海山,野马泉一带位于海山斜坡,其被构造肢解后呈NWW-SEE向分布.   相似文献   

14.
In an attempt to constrain a Late Paleozoic tectono-metamorphic event along the Lancang River Zone, fourteen samples were processed for K/Ar dating on fine mineral fractions and detrital muscovites from this zone in southwestern Yunnan, China. The samples include mica schists, mylonites and gneisses from the Proterozoic Lancang Group and phyllites from the western part of the Simao Basin. In addition, one Ar/Ar analysis was performed on separated phengites from a blueschist of the central part of the Lancang Group. The results reveal a considerable spread of ages; the tectonic evolution of the zone is constrained by the new data, which accentuate two temporally separate, but spatially overlapping events: (i) a Late Carboniferous high-P/low-T metamorphism related to an east-vergent, Late Paleozoic thrust belt, inverting a Devonian to Carboniferous marginal basin of the Yangtze-Platform, and (ii) an upper Permian and Triassic low-P/high-T belt caused by a post-orogenic stage of rifting with distinct petrological and geochemical similarities of the igneous rocks to the Emeishan Large Igneous Province. These results imply that no active continental margin accounts for the subduction of the Paleotethys main branch, proposed to be recorded either along the Lancang River or the Changning-Menglian Belt.  相似文献   

15.
In an attempt to constrain a Late Paleozoic tectono-metamorphic event along the Lancang River Zone, fourteen samples were processed for K/Ar dating on fine mineral fractions and detrital muscovites from this zone in southwestern Yunnan, China. The samples include mica schists, mylonites and gneisses from the Proterozoic Lancang Group and phyllites from the western part of the Simao Basin. In addition, one Ar/Ar analysis was performed on separated phengites from a blueschist of the central part of the Lancang Group. The results reveal a considerable spread of ages; the tectonic evolution of the zone is constrained by the new data, which accentuate two temporally separate, but spatially overlapping events: (i) a Late Carboniferous high-P/low-T metamorphism related to an east-vergent, Late Paleozoic thrust belt, inverting a Devonian to Carboniferous marginal basin of the Yangtze-Platform, and (ii) an upper Permian and Triassic low-P/high-T belt caused by a post-orogenic stage of rifting with distinct petrological and geochemical similarities of the igneous rocks to the Emeishan Large Igneous Province. These results imply that no active continental margin accounts for the subduction of the Paleotethys main branch, proposed to be recorded either along the Lancang River or the Changning-Menglian Belt.  相似文献   

16.
滇西南昌宁—孟连构造带火山岩地层学研究   总被引:6,自引:0,他引:6  
冯庆来  刘本培 《现代地质》1993,7(4):402-409
昌宁—孟连构造带火山岩非常发育,是重要的含矿岩系。在构造带南段,火山岩统称为依柳组,北段统称为平掌组下段,以往时代均归属早石炭世。本文工作表明,该区火山岩可分为两套:一套为早石炭世火山岩,分布于该构造带西部,以拉斑玄武岩系列为主,代表大洋中脊、洋岛残留物,仍称为依柳组;另一套为晚二叠世火山岩,分布于构造带中、东部,以碱性玄武岩系列为主,可能属亚速尔型洋岛火山岩范畴,而非大洋蛇绿岩套,新命名为老厂组。  相似文献   

17.
杨高学  李永军 《地学前缘》2015,22(6):233-240
随着研究的不断深入,在中亚造山带(CAOB)不断有不同时代的洋岛玄武岩(OIB)被识别出来。在中亚造山带西南缘的西准噶尔地区的多条蛇绿混杂岩带中,也存在具有OIB特征的玄武岩。这些玄武岩呈枕状,与超基性岩、辉长岩、块状玄武岩、灰岩及紫红色硅质岩等紧密共生。地球化学研究表明枕状玄武岩均为碱性系列,具有较高的TiO2含量(大多>2.5%)、强烈富集轻稀土元素、无明显Nb、Ta负异常,与典型的OIB极为相似,认为其可能形成于大洋板内与地幔柱有关的海山环境。通过对海山的发展阶段分析认为,西准噶尔地区海山应该发展到爆炸海山阶段,因为其中发育大量的枕状熔岩。海山中火山岩或火山碎屑沉积物富集大离子亲石元素和高场强元素,海山的俯冲将对弧及弧后地区火山岩地球化学产生明显影响,而西准噶尔地区泥盆纪-石炭纪火山岩中恰恰存在海山的信号。因此,海山俯冲模式可能能更好地解释西准噶尔地区火山岩中存在OIB特征火山岩的成因。另外,海山俯冲还存在潜在的资源效应,因此应该寻找和研究古海山及火山岛链俯冲的迹象,将对进一步找金铜等矿提供可靠依据。  相似文献   

18.
西南三江地区洋板块地层特征及构造演化   总被引:3,自引:3,他引:0  
以大地构造研究为主导,初步梳理了三江地区洋板块地层系统的分布及其构造演化规律。本文阐述了三江地区经历原-古特提斯大洋连续演化、分阶段拼贴增生至最终俯冲消亡的地质演化历程。甘孜-理塘弧后洋盆于早石炭世打开,二叠纪—中三叠世进入顶峰扩张期,晚三叠世洋盆萎缩引起向西俯冲,最终在晚三叠世末局部地区保留残留海。哀牢山弧后洋盆不晚于早石炭世形成,早石炭世—早二叠世整体扩张发育,早二叠世末或晚二叠世初开始向西俯冲,晚三叠世最终完全关闭。金沙江洋盆早石炭世时已扩张成洋,到早二叠世晚期开始俯冲,石炭纪—早二叠世早期是金沙江洋盆扩张的主体时期,早二叠世晚期至早、中三叠世俯冲消亡。澜沧江弧后洋盆中晚泥盆世开始扩张,在石炭纪—早二叠世发育为成熟洋盆,早二叠世晚期洋内俯冲形成洋内弧,晚二叠世—早、中三叠世双向俯冲消亡。昌宁-孟连洋为特提斯洋主带,具有原-古特提斯洋连续演化的地质记录,晚奥陶世开始向东俯冲消减,二叠纪末、早三叠世发生弧-陆碰撞作用,昌宁-孟连洋盆闭合。  相似文献   

19.
晚石炭世末期-三叠纪东澳大利亚的鲍恩-冈尼达-悉尼(Bowen- Gunnedah-Sydney)盆地系是位于拉克伦(Lachlan)褶皱带和新英格兰(New England)褶皱带之间的一个长条形的构造盆地。从北部的冈尼达(Gunnedah)到南部的巴特曼斯(Batemans)湾,悉尼盆地是鲍恩-冈尼达-悉尼盆地系南端的一个次级盆地。悉尼盆地的二叠系包括河流、三角洲、滨浅海沉积岩和火山岩地层。南悉尼盆地的西南部二叠系不整合覆盖于变形变质的拉克伦(Lachlan)褶皱带之上。二叠系由下部的塔拉特郎(Tallaterang)群、中部的肖尔黑文群(Shoalhaven Group)和上部的伊勒瓦拉煤系(Illawarra Coal Measures)组成。从晚石炭世末到中三叠世悉尼盆地经历了弧后扩张到典型的前陆盆地的不同阶段:弧后扩张阶段、被动热沉降阶段和挤压挠曲负载阶段。  相似文献   

20.
New data on the stratigraphy, structure, isotopic age, geochemistry, and geodynamic characteristics of the lithotectonic complexes of the Baikal-Vitim Fold System are reported. In particular, it is shown that Middle and Upper Paleozoic rocks are widespread along with Precambrian and Lower Paleozoic sequences. The Baikal-Vitim Fold System is characterized by cyclic evolution and comprises four structural stages: Baikalian (Riphean-Vendian), Caledonian (Cambrian-Early Silurian), Variscan (Late Silurian-Early Carboniferous), and Hercynian (Middle Carboniferous-Permian). A specific set of lithotectonic complexes formed in certain geodynamic settings corresponds to each stage. According to the proposed model, the Variscan and Hercynian complexes developed under conditions of progressively changing geodynamic settings of passive (Late Silurian-Middle Devonian), Andean-type active (Middle Devonian-Early Carboniferous), and Californian-type (Middle Carboniferous-Permian) continental margins. The Middle and Late Paleozoic evolution of the Baikal-Vitim Fold System is correlated with that of the Mongolia-Okhotsk Belt (Aga paleooceanic basin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号