共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water(ESTMW)using the high-frequency output of an eddy-resolved ocean model spanning the period 1994–2010.Results show that the subduction induced by mesoscale eddies accounts for about 31%of the total subduction of ESTMW formation.The volume of ESTMW trapped by anticyclonic eddies is slightly larger than that trapped by cyclonic eddies.The ESTMW trapped by all eddies in May reaches up to about 2.8×1013m3,which is approximately 16%of the total ESTMW volume.The eddy-trapped ESTMW moves primarily westward,with its meridional integration at 18°–30°N reaching about 0.17Sv,which is approximately 18%of the total zonal ESTMW transport in this direction,at 140°W.This study highlights the important role of eddies in carrying ESTMW westward over the northeastern Pacific Ocean. 相似文献
2.
The fluctuation in Ommastrephe bartrami yield from 1995 to 2001 in the North Pacific was shown obvious, on which this study was conducted using data of sea surface temperature (SST), chlorophyll-a (chl-a) and statistical production. The study shows that, cool water and low food abundance caused by abnormal Kuroshio resulted in the reduction in abundance of O. bartrami, which was worsened by excessive catch and the unawareness to local fishery resources protection. 相似文献
3.
We analyzed the temporal and spatial variation, and interannual variability of the North Pacific meridional overturning circulation using an empirical orthogonal function method, and calculated mass transport using Simple Ocean Data Assimilation Data from 1958–2008. The meridional streamfunction field in the North Pacific tilts N-S; the Tropical Cell (TC), Subtropical Cell (STC), and Deep Tropical Cell (DTC) may be in phase on an annual time scale; the TC and the STC are out of phase on an interannual time scale, but the interannual variability of the DTC is complex. The TC and STC interannual variability is associated with ENSO (El Niño-Southern Oscillation). The TC northward, southward, upward, and downward transports all weaken in El Niños and strengthen in La Niñas. The STC northward and southward transports are out of phase, while the STC northward and downward transports are in phase. Sea-surface water that reaches the middle latitude and is subducted may not completely return to the tropics. The zonal wind anomalies over the central North Pacific, which control Ekman transport, and the east-west slope of the sea level may be major factors causing the TC northward and southward transport interannual variability and the STC northward and southward transports on the interannual time scale. The DTC northward and southward transports decrease during strong El Niños and increase during strong La Niñas. DTC upward and downward transports are not strongly correlated with the Niño-3 index and may not be completely controlled by ENSO. 相似文献
4.
The formulation and justification of a three-layer baroclinic ocean model developed to simulate thegeneral circulation of the ocean are described in this paper.Test of the model in simulating the annualmean circulation patterns in the North Pacific under the prescribed atmospheric forcing,which consists ofthe climatological surface wind stress and sea surface heat flux,and comparison of the results withobservations showed that the model basically simulated the large scale features of the annual meancirculation patterns in the North Pacific Ocean such as those of the intensified western boundary currentsand the North Equatorial Currents and Undercurrents.But due to the coarse resolution of the model,some details of these currents were poorly reproduced.The seasonal variations of the North Pacific Oceancirculation driven by the seasonal mean sea surface wind stress was calculated,the different aspects of theseresults were analyzed and the main current(the intensified western boundary currents)transports we 相似文献
5.
采用英国Hadley中心1974-2006年逐月的北太平洋海表温度资料和NCEP/NCAR的北半球500hPa和1000hPa高度场资料,利用一元回归和相关分析等统计方法,研究各月北太平洋海温的变化特征、探讨冬季西北太平洋海温关键区,然后分析关键区海温与气象场的联系.结果表明,北太平洋海温变率较大的地方出现在我国东部的西北太平洋地区,年代际变化为上升趋势;海温与前一年12月和同期1月500hPa位势高度场的相关最好.表现为冬季东亚大槽对关键区海温的显著影响.1月关键区海温与后期5-6月西太平洋副高存在较显著的正相关,即1月关键区海温升高,同年5-6月副高亦加强,即反映冬季北太平洋SST对西太平洋副高的影响. 相似文献
6.
Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area. 相似文献
7.
Interannual variability of transport and bifurcation of the North Equatorial Current in the tropical North Pacific Ocean 总被引:1,自引:0,他引:1
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events. 相似文献
8.
This paper proposes a scheme for detecting the swell decay of a moving typhoon. We considered a typhoon that was neither far from a point source nor had a belt-like homogenous source,as previously studied. We tracked the swell close to the source during a typhoon in the western North Pacific Ocean. We used wind speed and significant wave height data derived from the Geophysical Data Record of the Jason-1 altimeter and the best-track information of the typhoon from the China Meteorological Administration tropical cyclone database. We selected three specific cases to reveal the decay characteristics of the swell generated by a moving typhoon. Based on an altimeter-based typhoon swell identification scheme and the dispersion relationship for deep water,we relocated the swell source for each altimeter measurement. The subsequent statistical decay coefficient was comparable to previous studies,and effectively depicted the swell propagation conditions induced by the typhoon. We hope that our results provide a new understanding of the characteristics and wave energy budget of the North Pacific Ocean,and significantly contribute to wave modeling in this region. 相似文献
9.
Journal of Oceanology and Limnology - Multi-year Simple Ocean Data Assimilation (SODA) and National Centers for Environmental Prediction (NCEP) datasets were used to investigate the leading... 相似文献
10.
Seasonal variability of the North Equatorial Current transport in the western Pacific Ocean 总被引:2,自引:0,他引:2
Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) across different longitudes in the research area shows a similar double-peak structure, with two maxima (in summer and winter), and two minima (in spring and autumn). This kind of structure can also be found in NEC geostrophic transport (NGT), but in a different magnitude and phase. These differences are attributable to Ekman transport induced by the local meridional wind and transport caused by nonzero velocity at the reference level, which is assumed to be zero in the NGT calculation. In the present work, a linear vorticity equation governing a 1.5-layer reduced gravity model is adopted to examine the dynamics of the seasonal variability of NGT. It is found that the annual cycle of NGT is mainly controlled by Ekman pumping induced by local wind, and westward-propagating Rossby waves induced by remote wind. Further research demonstrates that the maximum in winter and minimum in spring are mostly attributed to wind east of the dateline, whilst the maximum in summer and minimum in autumn are largely attributed to that west of the dateline. 相似文献
11.
12.
Journal of Oceanology and Limnology - Vigorous mesoscale eddies and significant sea surface temperature (SST) variations are found in the northern edge of the Pacific warm pool that features large... 相似文献
13.
The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event. 相似文献
14.
On the basis of the conductivity temperature depth(CTD)observation data off the coast of the Philippines(7.5°–18°N,130°E–the east coast of the Philippines)in the fall of 2005,the water mass distribution,geostrophic flow field,and heat budget are examined.Four water masses are present:the North Pacific Tropical Surface Water,the North Pacific Sub-surface Water,the North Pacific Intermediate Water,and the Antarctic Intermediate Water(AAIW).The previous three corresponded with the North Equatorial Current(NEC),the Kuroshio Current(KC),and the Mindanao Current(MC),respectively.AAIW is the source of the Mindanao Undercurrent.The mass transport of NEC,KC,and MC is 58.7,15,and 27.95Sv,respectively(relative to 1500db).NEC can be balanced by the transport across the whole transect 18°N(31.81 Sv)and 7.5°N(26.11 Sv)but not simply by KC and MC.Direct calculation is used to study the heat flux.In sum,1.45PW heat is transported outwards the observed region,which is much more than that released from the ocean to the air at the surface(0.05PW).The net heat lost decreased the water temperature by 0.75℃each month on average,and the trend agreed well with the SST change.Vertically,the heat transported by the currents is mainly completed in the upper 500 m. 相似文献
15.
The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly
understood due to the scarcity of available data. We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy
field in this zone. We found that velocity shear between this region and the neighboring North Equatorial Current contributes
greatly to the eddy generation. Furthermore, the eddy kinetic energy level (EKE) shows an annual cycle, maximum in April/May
and minimum in December/January. Analyses of the temporal and spatial distributions of the eddy field revealed clearly that
the velocity shear closely related to baroclinic instability processes. The eddy field seems to be more zonal than meridional,
and the energy containing length scale shows a surprising lag of 2–3 months in comparison with the 1-D and 2-D EKE level.
A similar phenomenon is observed in individual eddies in this zone. The results show that in this eddy field band, the velocity
shear may drive the EKE level change so that the eddy field takes another 2–3 months to grow and interact to reach a relatively
stable state. This explains the seasonal evolution of identifiable eddies. 相似文献
16.
Based on the 50-year Simple Ocean Data Assimilation(SODA) reanalysis data, we investigated the basic characteristics and seasonal changes of the meridional heat transport carried by the North Pacific Meridional Overturning Circulation. And we also examined the dynamical and thermodynamic mechanisms responsible for these heat transport variability at the seasonal time scale. Among four cells, the tropical cell(TC) is strongest with a northward heat transport(NHT) of(1.75±0.30) PW(1 PW=1.0×10 15 W) and a southward heat transport(SHT) of(-1.69±0.55) PW, the subtropical cell(STC) is second with a NHT of(0.71±0.65) PW and SHT of(-0.63±0.53) PW, the deep tropical cell(DTC) is third with a NHT of(0.18±0.03) PW and SHT of(-0.18±0.11) PW, while the subpolar cell(SPC) is weakest with a NHT of(0.09±0.05) PW and SHT of(-0.07±0.09) PW. These four cells all have dif ferent seasonal changes in their NHT and SHT. Of all, the TC has stronger change in its SHT than in its NHT, so do both the DTC and SPC,but the seasonal change in the STC SHT is weaker than that in its NHT. Therefore, their dynamical and thermodynamic mechanisms are dif ferent each other. The local zonal wind stress and net surface heat flux are mainly responsible for the seasonal changes in the TC and STC NHTs and SPC SHT, while the local thermocline circulations and sea temperature are primarily responsible for the seasonal changes of the TC,STC and DTC SHTs and SPC NHT. 相似文献
17.
18.
The impact of meso-scale eddies on the Subtropical Mode Water in the western North Pacific 总被引:1,自引:0,他引:1
Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002–2011, the North Pacific Subtropical Mode Water (NPSTMW) distribution is investigated and cyclonic and anti-cyclonic eddies (CEs and AEs) are constructed to study the influence of their vertical structures on maintaining NPSTMW. Combining eddies identified by the GVA data and Argo profiling float data, it is found that the average NPSTMW thickness of AEs is about 60 dbar, which is thicker than that of CEs. The NPSTMW thicker than 150 dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. About 3377 (3517) profiles, which located within one diameter of the nearest CEs (AEs) are used to construct the CE (AE). The composite AE traps low-PV water in the center and with a convex shape in the vertical section. The ‘trapped depth’ of the composite CE (AE) is 300 m (550 m) where the rotational velocity exceeds the transitional velocity. The present study suggests that the anticyclonic eddies are not only likely to form larger amounts of NPSTMW, but also trap more NPSTMW than cyclonic eddies. 相似文献
19.
Based on the NCEP (National Centers for Environmental Prediction) data, the relationship between the Sea Surface Temperature
Anomalies (SSTAs) in the North Pacific and the atmospheric circulation anomalies in January 2008 is analyzed in this study.
The SSTA mode most correlated with the Geopotential Height anomalies (GHAs) in January 2008 in the North Pacific exhibited
a basin-wide horseshoe pattern with a warm center in November 2007. This persistent SSTA pattern would induce positive GHAs
in the Aleutian Low area and East Asia and the northward extension of the West Pacific Subtropical High in January 2008 by
maximum diabatic heating in the atmosphere over the Kuroshio Oyashio Extension (KOE) area, leading to the occurence of the
circumpolar trough-ridge wave train anomaly in January 2008. 相似文献
20.
Variability of tropical cyclone in high frequent occurrence regions over the western North Pacific 总被引:1,自引:0,他引:1
In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region E), are defined with frequency of TC's occurrence at each grid for a 45-year period(1965–2009), where the frequency of occurrence(FO) of TCs is triple the mean value of the whole western North Pacific. Over the region S, there are decreasing trends in the FO of TCs, the number of TCs' tracks going though this region and the number of TCs' genesis in this region. Over the region P, the FO and tracks demonstrate decadal variation with periods of 10–12 year, while over the region E, a significant 4–5 years' oscillation appears in both FO and tracks. It is demonstrated that the differences of TCs' variation in these three different regions are mainly caused by the variation of the Western Pacific Subtropical High(WPSH) at different time scales. The westward shift of WPSH is responsible for the northwesterly anomaly over the region S which inhibits westward TC movement into the region S. On the decadal timescale, the WPSH stretches northwestward because of the anomalous anticyclone over the northwestern part of the region P, and steers more TCs reaching the region P in the greater FO years of the region P. The retreating of the WPSH on the interannual time scale is the main reason for the FO's oscillation over the region E. 相似文献