首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of vitellogenin in the transport of organochlorines was investigated in Atlantic croaker (Micropogonias undulatus) by exposing them through the diet to o,p′-DDT at a concentration of 10.8 μg/100 g fish/day for 14 days or Aroclor 1254 (PCB) at a concentration of 0.5 mg/100 g fish/day for 30 days during gonadal recrudescence. Tissue samples were taken from the fish at various times after initial exposure, and o,p′-DDT and PCBs were extracted in acetonitrile and analyzed by gas chromatography. Analysis of the ovarian tissue collected 2 and 3 weeks from the start of exposure revealed that the o,p′-DDT concentration increases as the gonadosomatic index (GSI) increases (r2 = 0.63), with accumulation ranging from less than 1% to as much as 8% of the total dosage. Interestingly, o,p′-DDT did not accumulate in the testes during the same exposure period. Accumulation of PCBs was found to be 40 times higher in the ovaries than in the testes. Gel filtration of plasma from exposed females showed that o,p′-DDT elutes in the low density lipoprotein and vitellogenin fractions. Control plasma incubated with o,p′-DDT at 4 °C for 16 h followed by chromatography on Sepharose 6B gave similar results with an o,p′-DDT concentration of 0.6μg/mg protein in the vitellogenin fraction. Furthermore, both o,p′-DDT and PCBs were found to bind to purified croaker vitellogenin. These results suggest that lipoproteins, including vitellogenin, are involved in the transport and accumulation of organochlorines in the ovaries of exposed fish.  相似文献   

2.
The objective of this study was to determine if tamoxifen or an aromatase inhibitor (4-hydroxyandrostenedione; 4-OHA) affected plasma concentrations of o,p-DDT and its metabolites, o,p-DDD and o,p-DDE, in mature tilapia. Male and female tilapia were injected 6 times intraperitoneally with o,p-DDT (40 mg/kg) alone or in combination with 4-OHA (2 mg/kg) over a 12 day period. An additional group of male fish was injected with tamoxifen (5 mg/kg) plus o,p-DDT. At the end of the treatment period, plasma samples were extracted and analyzed by GC/ECD. Females injected only with o,p-DDT had significantly higher levels of o,p-DDT compared with males. Interestingly, females and males treated concomitantly with o,p-DDT and 4-OHA or tamoxifen had significantly lower concentrations of plasma o,p-DDT (about 50%) compared with fish treated with only o,p-DDT. These initial results suggest that an interaction between endocrine-active compounds occurs in vivo in tilapia and may involve alterations in metabolism of o,p-DDT.  相似文献   

3.
Over 50 seawater samples from two different sites—Barcelona (Spain) and Banyuls-sur-Mer (France)—were analyzed in order to study the extent and postulate the processes driving the enrichment of hydrophobic organic pollutants in the sea surface microlayer (SML). A number of individual polychlorinated biphenyl (PCB) congeners (41) were measured to study their partitioning between the particulate (fraction > 0.7 μm) and the dissolved + colloidal phases (fraction < 0.7 μm), with the latter being differentiated into estimated dissolved and colloidal phases. In addition, several organochlorine pesticides were also measured, namely, HCB, α-HCH, γ-HCH, 4,4′-DDE, 4,4′-DDD and 4,4′-DDT. The presence of PCB congener profiles found in the SML suggests a dynamic coupling with the atmosphere in Banyuls sampling site, whereas offshore Barcelona the presence of highly chlorinated congeners was due to persistent sediment resuspension. The average PCB concentration in the SML dissolved + colloidal phase were higher in Banyuls (7.8 ng L 1) than in Barcelona (3.6 ng L 1) samples, but in the particulate phase concentrations were higher in Barcelona (3.2 ng L 1) to that of Banyuls (1.4 ng L 1). However, PCB concentrations in the SML generally also showed large variability. Enrichment factors of PCBs and other organochlorine compounds in the SML with respect to the underlying water column ranged from 0.2 to 7.4. This may be explained for both the dissolved + colloidal and particulate phases by the enrichment in the SML of organic carbon (OC) as discerned from particle–water and colloid–water partitioning.  相似文献   

4.
A batch sorption technique for the determination of particle–water interactions of hydrophobic organic micropollutants under simulated estuarine conditions is described. Results are presented for the behaviour of 2,2′,5,5′-tetrachlorobiphenyl (2,2′,5,5′-TCB) in river and sea waters, both in the presence and absence of estuarine suspended particles. Adsorption onto particles in sea water was enhanced compared with adsorption in river water owing to salting out of the compound, and possibly of the particulate organic matter, in the presence of high concentrations of dissolved ions. The particle–water distribution coefficient, KD, decreased from about 120×103 to 10×103 ml g−1, and from about 150×103 to 20×103 ml g−1, in river water and sea water, respectively, over a particle concentration range of 10–1000 mg l−1. Incomplete recovery of compound from the reactor walls is partly responsible for a particle concentration effect, while artefacts relating to inadequate sediment and water phase separation were ruled out following further experiments. The particle concentration effect, which is replicated in many field studies of hydrophobic organic micropollutants, including 2,2′,5,5′-TCB, is incorporated into a simple partitioning model and is discussed in the context of the likely estuarine behaviour of such compounds.  相似文献   

5.
In order to investigate the mechanism by which o,p′-DDT disrupts endocrine functioning of Nile tilapia in vivo, the estrogenicity of o,p′-DDT was investigated in conjunction with 17β-estradiol (E2) and tamoxifen. Mature, male tilapia were treated intraperitoneally with o,p′-DDT (60 mg/kg, one dose) or E2 (5 mg/kg, four doses) in the presence or absence of tamoxifen (5 mg/kg, six doses) for 12 days and then plasma vitellogenin (Vtg) (measured as alkaline-labile phosphorous), E2, and testosterone (T) were measured. Vtg levels were increased dramatically by E2 (1744±171 μg/ml) and moderately by o,p′-DDT (82±15 μg/ml) compared with controls (23±3.5 μg/ml). Tamoxifen alone had no effect on Vtg production, but inhibited both E2 and o,p′-DDT stimulated vitellogenesis. T levels were reduced with E2 administration (1688±383 pg/ml) and declined further with the combined treatment of E2 and tamoxifen (281±70 pg/ml), compared with controls (6558±1438 pg/ml). Tamoxifen or o,p′-DDT alone did not affect T levels, but their combined treatment did (2069±647 pg/ml). The results of this study suggest that o,p′-DDT is weakly estrogenic in male tilapia, and that this activity may be mediated through the estrogen receptor.  相似文献   

6.
Analyses of the concentration product (Ca2+) × (CO32−) in the pore waters of marine sediments have been used to estimate the apparent solubility products of sedimentary calcite (KSPc) and aragonite (KSPa) in seawater. Regression of the data gives the relation In KPSPc = 1.94 × 10−3 δP − 14.59 The 2°C, 1 atm value of KSPc is, then, 4.61 × 10−7 mol2 l−2. The pressure coefficient yields a at 2°C of −43.8 cm3 atm−1. A single station where aragonite is present in the sediments gives a value of KSPa = 9.2 × 10−7 (4°C, 81 atm). The calcite data are very similar to those determined experimentally by Ingle et al. (1973) for KSPc at 2°C and 1 atm. The calculated is also indistinguishable from the experimental results of Ingle (1975) if is assumed to be independent of pressure.  相似文献   

7.
Vertical profiles of dimethylsulfide (DMS) and β-dimethylsulfoniopropionate, particulate (pDMSP) and dissolved (dDMSP), were measured biweekly in the upper 140 m of the Sargasso Sea (32°10′N, 64°30′W) during 1992 and 1993. DMS and pDMSP showed strong, but different, seasonal patterns; no distinct intra-annual pattern was observed for dDMSP. During winter, concentrations of DMS were generally less than 1 nmol l−1 at all depths, dDMSP was less than 3 nmol l−1 and pDMSP was less than 8 nmol l−1. In spring, concentrations of both dDMSP and pDMSP rose, on a few occasions up to 20 nmol l−1 in the dissolved pool and up to 27 nmol l−1 in the particulate pool. These increases, due to blooms of DMSP-containing phytoplankton, resulted in only minor increases in DMS concentrations (up to 4 nmol l−1). Throughout the summer, the concentrations of DMS continued to increase, reaching a maximum in August of 12 nmol l−1 (at 30 m depth). There was no concomitant summer increase in dDMSP or pDMSP. The differences among the seasonal patterns of DMS, dDMSP, and pDMSP suggest that the physical and biological processes involved in the cycling of DMS change with the seasons. There is a correlation between the concentration of DMS and temperature in this data set, as required by some of the climate feedback models that have been suggested for DMS. A full understanding of the underlying processes controlling DMS is required to determine if the temperature-DMS pattern is of significance in the context of global climate change.  相似文献   

8.
The vertical flux of particulate matter at 330 m depth in San Lázaro Basin off southern Baja California ranged from 63 to 587 mg m−2 d−1 between August and November 1996. Organic carbon contents were between 5.6 and 14.8%, yielding flux rates of 9–40 mgC m−2 d−1. In December 1997 and January 1998, at the height of the strong El Niño event, the respective fluxes (47–202 mg m−2 d−1 and 3–8 mgC m−2 d−1) were comparable. The February–June 1998 records, however, revealed sharply reduced mass (1–6 mg m−2 d−1) and organic carbon (0.2–0.8 mgC m−2 d−1) fluxes. The organics collected in 1996 were predominantly autochthonous (δ13C=−22‰; C/N=8). The variations in δ15N (8.3–11.0‰) suggest an alternation of new and regenerated production, possibly associated with fluctuations in the intensity of deep mixing during that autumn. The relatively high organic matter fluxes in December 1997 appear to be associated with regenerated production. The average composition from February to June 1998 (δ13C=−23.6‰; 15N=11.7‰; C/N=10.5) indicates degraded material of marine origin. The maximum δ15N value found (14‰) suggests that deeper, denitrified waters were brought to the surface and possibly advected laterally. Regime changes in the waters of the basin occur at 6–10 week intervals, evidenced by concurrent shifts in most of the measured parameters, including fecal pellet types and metal chemistry. The marine snow-dominated detritus collected showed a shift from a mixed diatom-rich-radiolarian-coccolith assemblage in late 1996 to a coccolith-dominated assemblage, including the contents of fecal pellets, during the 1997–1998 El-Niño period. T–S profiles, plankton analysis and chlorophyll contents of the upper water column indicated that the strong phytoplankton bloom, normally associated with seasonal upwelling along the Pacific coast of Baja, did not occur during the spring of 1998. The persistence of oligotrophic conditions during the 1997–1998 El Niño event favored the dominance of nanoplankton and reduced the vertical flux of particles.  相似文献   

9.
Exopolymeric substances (EPS) produced by microorganisms play important roles in various aquatic, porous, and extreme environments. Only recently has their occurrence in sea ice been considered. We used macroscopic and microscopic approaches to study the content and possible ecological role of EPS in wintertime fast ice near Barrow, Alaska (71°20′ N, 156°40′ W). Using Alcian blue staining of melted ice samples, we observed high concentrations of EPS in all samples examined, ranging from 0.79 to 7.71 mg xanthan gum equivalents (XGEQV) l−1. Areal conversions to carbon equivalents yielded 1.5−1.9 g C m−2 ice in March and 3.3−4.0 g C m−2 in May (when the ice was thicker). Although EPS did not correlate with macronutrient or pigment data, the latter analyses indicated ongoing or recent biological activity in the ice within temperature horizons of −11°C to −9°C and warmer. EPS correlated positively with bacterial abundance (although no functional relationship could be deduced) and with dissolved organic carbon (DOC) concentrations. Ratios of EPS/DOC decreased at colder temperatures within the core, arguing against physical conversion of DOC to EPS during freezing. When sea-ice segments were maintained at representative winter temperatures (−5°C,−15°C and −25°C) for 3−14 months, the total EPS content increased significantly at rates of 5−47 μg XGEQV l−1 d−1, similar to published rates of EPS production by diatoms. Microscopic images of ice-core sections at these very cold temperatures, using a recently developed non-invasive method, revealed diatoms sequestered in spacious brine pockets, intact autofluorescent chloroplasts in 47% of the (pennate) diatoms observed, and indications of mucus in diatom-containing pores. The high concentrations of EPS detected in these winter ice cores represent a previously unrecognized form of organic matter that may contribute significantly to polar ocean carbon cycles, not only within the ice but after springtime release into the water column. The EPS present in very high concentrations in the brine of these microhabitats appear to play important buffering and cryoprotectant roles for microorganisms, especially diatoms, against harsh winter conditions of high salinity and potential ice-crystal damage.  相似文献   

10.
Natural iron fertilization processes are occurring around the Crozet Islands (46°26′S–52°18′E), thus relieving the water masses from the normally encountered High Nutrients Low Chlorophyll (HNLC) conditions of the Southern Ocean. During austral summers 2004/2005 and 2005/2006, iron and aluminium concentrations were investigated in large particles (> 53 µm) collected from just below the mixed layer at stations under the influence of island inputs, and also in adjacent HNLC waters. These large particles are anticipated to sink out of the mixed layer, and to reflect the net effects of input and cycling of these elements in the overlying mixed layer. Labile and refractory fractions were determined by a two-stage leaching technique. Data showed that water masses downstream of the islands were enriched in total iron and aluminium (0.25–2.68 nmol L− 1 and 0.34–3.28 nmol L− 1 respectively), relative to the southern HNLC control sites (0.15–0.29 nmol L− 1 for Fe and 0.12–0.29 nmol L− 1 for Al), with only a small fraction (typically < 1%) being acid leachable in both environments. Particulate iron predominantly derived from the island system represents a significant fraction of the total water column iron inventory and may complement dissolved Fe inputs that help support the high summer productivity around the Crozet islands.  相似文献   

11.
We tracked the duration and intensity of the euphausiid spawning season through biweekly sampling along a transect off Newport, OR (latitude 44°40′N) over a six year period from 1996 to 2001. Our sampling consisted of vertical plankton tows, CTD casts, and collection of water for determination of chlorophyll a. Here, we report on data collected from two stations, 5 and 15 nautical miles (9.3 and 27.8 km) offshore. The density of euphausiid eggs in our samples was highly variable spatially and temporally; we saw the most striking differences in egg densities and length of the spawning season, when we compared spawning before and after 1999. This year corresponded to the time when the Pacific Decadal Oscillation switched from warm phase (pre-1999) to cool phase (1999–present). The years 1996 and 1997 were characterized by one large, late summer peak in egg density at our inshore station. 1998, an El Niño year, followed this pattern for our offshore station, but eggs were nearly absent at our inshore station. Starting in 1999, we saw multiple peaks in egg density and found that the spawning season extended from spring through early fall. For example, in spring (March–May) at the inshore station, the abundance of eggs increased from an average of 0.4 m−3 (1996–1998) to 51.3 m−3 (1999–2001), and for summer (July–September), 27.8 m−3 to 132.6 m−3 for the same time period. At the offshore station, egg abundances doubled over the same two time periods: 7 m−3 versus 11 m−3 (spring) and 55 m−3 versus 186 m−3 (summer). Peaks in egg densities were often associated with phytoplankton blooms, but not in a predictable way. Peaks in egg densities often followed cold-water upwelling events, especially at the inshore station. It is not yet clear whether this connection is due to changes in advection or changes in upwelling-induced productivity.  相似文献   

12.
The apparent solubility product Ksp of calcite in seawater was measured as a function of temperature, salinity, and pressure using potentiometric saturometry techniques. The temperature effect was hardly discernible experimentally. The value of Ksp at 25°C was 4.59·10−7 mole2/(kg seawater)2 at 35‰S, 5.34·10−7 at 43‰S, and 3.24·10−7 at 27‰S. The apparent partial molal volume was found to be −34.4 cm3 at 25°C and −42.3 cm3 at 2°C from a linear fit of log(Ksp P/Ksp 1). These results were used in conjunction with field data to calculate the degree of saturation in the oceans and showed undersaturation at shallower depths than previously reported.  相似文献   

13.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

14.
Sea surface pCO2 was monitored during 49 cruises from February 1997 to December 1999 along a section perpendicular to the central California Coast. Continuous measurements of the ocean–atmosphere difference of pCO2 were made on a mooring in the same region from July 1997 to December 1999. The El Niño/La Niña cycle of 1997–1999 had a significant influence on local ocean–atmosphere CO2 transfer. During the warm anomaly associated with El Niño, upwelling was suppressed and average sea surface pCO2 was below atmospheric level. High rainfall and river runoff in the late winter and early spring of 1998 produced areas where pCO2 was depressed by as much as 100 μatm. A flux ranging from 0.3 to 0.7 mol C m−2 y−1 from the atmosphere into the ocean was estimated for the El Niño period from wind and ΔpCO2 data. Temperatures and upwelling returned to near normal in the summer of 1998, but a cold anomaly developed during autumn of that year. Temperature and pCO2 data indicate that upwelling continued throughout much of the 1998–1999 winter and intensified significantly in the spring of 1999. During strong upwelling events, the estimate of ocean to atmosphere flux approached rates of 50 mol C m−2 y−1. The estimate for the average CO2 flux from July 1998 to July 1999 was 1.5–2.2 mol C m−2 y−1 from the ocean to the atmosphere. While the flux estimate for the El Niño time period may be applicable to a larger area, the high ocean to atmosphere fluxes during La Niña might be the result of sampling near a zone of intense upwelling.  相似文献   

15.
Twenty-two different species of Arctic brown, red and green macroalgae, collected in the Kongsfjord at Ny-Ålesund (Spitsbergen), were incubated under polar conditions and investigated for their release of volatile halogenated organic compounds (VHOC). Bromoform, dibromomethane, dibromochloromethane, bromodichloromethane, 1,2-dibromoethane, diiodomethane and chloroiodomethane have been identified and their net releases during incubations were determined. Generally, brown and green macroalgae showed higher VHOC release, while red macroalage had only low release. Bromoform was released in relatively large quantities from all species studied, with the highest release observed from the brown algae Dictyosyphon foeniculaceus (0.3 μg g−1 wet algal weight day−1) and Laminaria saccharina (0.15 μg g−1 wet algal weight day−1), and from the green algae Monostroma arcticum (0.3 μg g−1 wet algal weight day−1) and Blidingia minima (0.27 μg g−1 wet algal weight day−1). Dibromomethane, diiodomethane, dibromochloromethane and 1,2-dibromoethane showed lower net release during the incubations. The net release of chloroiodomethane and bromodichloromethane was very low for the most algae species investigated. Based on the distribution of these algae in the Arctic environment, Dictyosiphon foeniculaceus and Laminaria saccharina may be important sources for VHOC because of high release and high biomass. Release of VHOC could be detected from all parts of the thallus of the macroalga. This may provide some evidence for a possible role of VHOC production as a chemical protection mechanism in algae.  相似文献   

16.
The potential of the North Atlantic as a sink for atmospheric CO2 was investigated by studying the carbonic system using data obtained during the spring of 1991. The air-sea flux of CO2 was related to chlorophyll and other environmental variables, and the regeneration of carbon in the mid-ocean studied by examining vertical sections representative of the study area.Poor correlations were found between pCO2 and chlorophyll throughout much of the study area, although a good correlation was found along 16°W. The highest air-sea fluxes of CO2 were calculated for areas where chlorophyll was highest (45°13′N, 16°04′W), and where the greatest wind speeds occurred (47°51′N, 28°18′W). The mean CO2 flux from the atmosphere to the ocean during the study period (May) was calculated as 0.65mmol m−2d−1, which compares well with other studies. Regression equations were developed to predict total inorganic carbon from nutrients; errors were typically less than 1 μmol kg−1. Regeneration of carbon in the mid-ocean occurred in two principal stages: 0–1000m and>2300m. Regeneration in the upper zone was dominated by soft tissue carbon (86%), with skeletal carbon (calcite) contributing only 14%. The fraction of regenerated carbon of skeletal origin increased to 51% in the>2300m zone.  相似文献   

17.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

18.
Copper complexing capacity of cell exudates of Dunaliella salina in natural seawater culture medium was investigated in order to evaluate the influence of this organism on speciation of trace metals in seawater.Seawater samples were collected at 200 m and 2 miles off the coast and immediately filtered. Copper complexing capacity (CCCu) and stability constants (K′) of related cupric complexes were then measured. They were, respectively, 27.1 × 10−8 mol l−1 and 0.56 × 107 l mol−1 for the samples collected at 200 m and 12.8 × 10−8 mol l−1 and 6.10 × 107 l mol−1 for those collected 2 miles off the coast. A stock culture (20 ml, 106 cells ml−1) in log-phase was inoculated in 2 l of each sample of filtered natural seawater. The trend of cell influence was estimated on filtered culture medium by measuring CCCu and K′ after 1 h, 3 and 7 days. From the results it appears that CCCu increased with respect to time and this was related to the growth rate, indicating a certain relationship with cell metabolic activity.It can be concluded that a comparison between the culture referring to 200 m and 2 miles, respectively, shows that the former presents a CCCu two times higher than the latter while the K′ is ten times higher at 2 miles than that at 200 m.  相似文献   

19.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

20.
We determined the range of the tidal variations in nutrient flux across the sediment–water interface and elucidated mechanisms of the flux variation in two estuarine intertidal flats (one sand, one mud) in northeastern Japan. Nutrient flux was measured using in situ light and dark chambers, which were incubated for 2 h, 2–6 times per day. Results showed that nutrient concentration in overlying water varied by tide and was also affected by sewage-treated water inflow. The nutrient fluxes responded quickly to the tidal variation in overlying water chemistry and the range of the variation in flux was as large as the seasonal-scale variation reported in previous studies. In the sand flat, salinity increase likely enhanced benthos respiration and led to increases in both O2 consumption and PO43− regeneration under low illumination, while benthic microalgae were likely to actively generate O2, uptake PO43− and suppress PO43− release under high illumination (>900 μmol photons m−2 s−1). Also in the mud flat, PO43− flux was related with O2 flux, although the range of temporal variation in PO43− flux was small. In both the flats, NH4+ flux was always governed by NH4+ concentration in the overlying water; either an increase in NH4+ uptake or a decrease in NH4+ release was observed as the NH4+ concentration rose due to inflow of river water or input of sewage-treated water. Although NO3 tended to be released in both tidal flats when low NO3 concentration seawater dominated, their relationship was likely to be weakened under conditions of low oxygen consumption and suppressed denitrification. It is likely that tidal variation in nutrient flux is governed more by the nutrient concentration than other factors, such as benthic biological processes, particularly in the case where nutrient concentration in the overlying water is relatively high and with wide amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号