首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The low frequency array (LOFAR) radiotelescope will be a powerful instrument for answering fundamental, unresolved scientific questions concerning solar system radio phenomena and related emissions from nearby stellar systems. This paper reviews the phenomena, emission mechanisms, open scientific questions, and LOFAR's capabilities. LOFAR will detect metric solar radio bursts in the corona and interplanetary medium, out to distances of order 10 solar radii, as well as Jovian radio emissions. Arguments are given that LOFAR may be sufficiently sensitive to detect stellar analoges of solar type II and III bursts, and may detect cyclotron-maser emissions from extra-solar planets. LOFAR may also aid space weather research, by passively detecting coronal mass ejections (CMEs) via scintillation and Faraday rotation effects, or by detecting radar signals bounced off CMEs and coronal density structures if a suitable solar radar is developed.  相似文献   

2.
3.
The source regions of solar coronal mass ejections   总被引:1,自引:0,他引:1  
Knowledge of the origin of the solar coronal mass ejection (CME) may be crucial to our understanding of several active solar phenomena, such as flares, as well as to the structure and stability of the corona and the prediction of interplanetary disturbances. In recent years, two camps of opinion have emerged, based on the belief that CMEs either commonly originate from structures intimately linked to active regions or they originate from coronal hole regions. This present study investigates the locations of 95 CME events observed during 1984–1986 relative to coronal hole and active region features. We find no evidence to support the coronal hole hypothesis and many indications that active regions are indeed associated with the source regions of CMEs.  相似文献   

4.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

5.
White-light observations of the total solar eclipse on 13 November 2012 were made at two sites, where the totality occurred 35 min apart. The structure of the corona from the solar limb to a couple of solar radii was observed with a wide dynamic range and a high signal-to-noise ratio. An ongoing coronal mass ejection (CME) and a pre-CME loop structure just before the eruption were observed in the height range between 1?–?2 R. The source region of CMEs was revealed to be in this height range, where the material and the magnetic field of CMEs were located before the eruption. This height range includes the gap between the extreme ultraviolet observations of the low corona and the spaceborne white-light observations of the high corona, but the eclipse observation shows that this height range is essential for the study of CME initiation. The eclipse observation is basically just a snapshot of CMEs, but it indicates the importance of a continuous coverage of CME observations in this height range in the future.  相似文献   

6.
The Low Frequency array (LOFAR) will be a next generation digital aperture synthesis radio telescope covering the frequency range from 10 to 240 MHz. The instrument will feature full polarisation and multi-beaming capability, and is currently in its design phase. This work highlights the solar, heliospheric and space weather applications where LOFAR, with its unique and unprecedented capabilities, can provide useful information inaccessible by any other means. The relevant aspects of the LOFAR baseline design are described, and the most promising techniques of interest are enumerated. These include tracking coronal mass ejections (CMEs) out to large distances using interplanetary scintillation (IPS) methods, tomographic reconstruction of the solar wind in the inner heliosphere using IPS, direct imaging of the radio emission from CMEs and finally possible Faraday rotation studies of the magnetic field structure of the heliosphere and the CMEs. This work is a part of an effort directed towards ensuring the compatibility of LOFAR design with solar and space weather applications, in collaboration with the wider community.  相似文献   

7.
Démoulin  Pascal  Dasso  Sergio  Janvier  Miho  Lanabere  Vanina 《Solar physics》2019,294(12):1-34

The three-dimensional morphology and direction of propagation of coronal mass ejections (CMEs) are essential information for identifying their source on the solar disk, for understanding the processes of their ejection and propagation in the corona, and for forecasting their possible impact with the Earth or any other objects in the solar system. The polarization of the Thomson scattering by an electron is known to provide information on its position with respect to the plane of the sky. This polarimetric technique is applied to reconstruct 15 CMEs on the basis of white-light polarized images obtained with the Large Angle Spectrometric Coronagraph (LASCO) C2, which have been extensively corrected for instrumental effects. It does provide valuable results in spite of the time delays between the three observations required to build the polarization maps. Most of these CMEs exhibit complex structures making a classification in terms of simple shapes such as arcade of loops or flux rope difficult or even questionable. Three of these CMEs benefited from multiple observations allowing us to follow their three-dimensional development as they propagated outward. All CMEs are tracked back to the solar surface and in several instances, active regions are identified as the probable sources. Finally, the projected speeds and masses derived from white-light unpolarized observations have been corrected for the projection angle to produce unbiased values.

  相似文献   

8.
Yu Liu 《Solar physics》2008,249(1):75-84
Liu et al. (Astrophys. J. 628, 1056, 2005a) described one surge – coronal mass ejection (CME) event showing a close relationship between solar chromospheric surge ejection and CME that had not been noted before. In this work, large Hα surges (>72 Mm, or 100 arcsec) are studied. Eight of these were associated with CMEs. According to their distinct morphological features, Hα surges can be classified into three types: jetlike, diffuse, and closed loop. It was found that all of the jetlike surges were associated with jetlike CMEs (with angular widths ≤30 degrees); the diffuse surges were all associated with wide-angle CMEs (e.g., halo); the closed-loop surges were not associated with CMEs. The exclusive relation between Hα surges and CMEs indicates difference in magnetic field configurations. The jetlike surges and related narrow CMEs propagate along coronal fields that are originally open. The unusual transverse mass motions in the diffuse surges are suggested to be due to magnetic reconnections in the corona that produce wide-angle CMEs. For the closed-loop surges, their paths are just outlining stable closed loops close to the solar surface. Thus no CMEs are associated with them.  相似文献   

9.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.  相似文献   

10.
We present velocity estimates of bulk motions in the solar corona using data from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft ( SOHO ). We describe a new technique which automatically provides a mass-weighted mean velocity profile in an entirely objective fashion without the need for individual event identification. A weighted velocity profile of this kind reflects the motion of the energetically dominant component of the coronal mass ejection (CME) mass spectrum and is of particular interest in consideration of the overall energy budget of the CME process. We consider the mean motion within three latitudinal bands centred at 0°, 20° and 40° over a one-year period around the time of solar minimum. We find terminal velocities within the LASCO field of around 300 km s−1 in all latitude bands but note a latitudinal dependence in CME evolution through the low corona prior to reaching these velocities. We find evidence that ejections in the equatorial zone undergo continuous acceleration whilst at higher latitudes a discrete burst of acceleration is seen to occur at around 4 R from the Sun's centre with relatively little acceleration thereafter. We also consider the energy deposition rates necessary to generate these profiles.  相似文献   

11.
Kocharov  L.  Torsti  J. 《Solar physics》2002,207(1):149-157
We summarize ERNE/SOHO observations of solar energetic particle events associated with impulsive soft X-ray flares and LASCO coronal mass ejections (CMEs). The new observational data support an idea that the >10 MeV proton acceleration may be initiated at different coronal sources, operating in the flaring active region and on the global coronal scale, in concert with CME development. However, the particle acceleration continues beyond the coronal scales and may culminate at the interplanetary CME well after the flare. We emphasize the importance of CME liftoff/aftermath processes in the solar corona and the possible role of seed particle re-acceleration, which may explain the existence of hybrid solar energetic particle events.  相似文献   

12.
Andrews  M.D. 《Solar physics》2002,208(2):317-324
Several recent papers have considered the observation of halo coronal mass ejections (CMEs) using the assumption that coronal emission is symmetric with respect to angular position from the Sun. This paper presents a simple but rigorous treatment of the observation of a single electron in the solar corona. The brightness of an electron as a function of height and angle from the solar limb is presented. The conclusion is reached that there is a front-to-back asymmetry of coronal emission that becomes significant at large angle and/or large height. The observation of halo CMEs is considered. The suggestion is made that a mass cut-off makes it likely that halo CMEs will be more massive, wider, and faster than the typical CMEs. Front-side halos should be more commonly observed than CMEs from the back side.  相似文献   

13.
It is well established that solar Type-II radio bursts are signatures of magnetohydrodynamical (MHD) shock waves propagating outward through the solar corona. Nevertheless, there are long-standing controversies about how these shocks are formed; solar flares and the coronal mass ejections (CMEs) are considered to be the most likely drivers. We present the results of the analysis of four solar Type-II bursts recorded between 20 January 2010 and 17 November 2011 by the Compound Astronomical Low-frequency Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO-BR) (in Brazil), which operates in the frequency range of 45?–?870 MHz. For all four solar Type-II radio bursts, which consisted of one event without band splitting and three split-band variants, the outcomes are consistent with those reported in the literature. All four Type-II radio bursts were accompanied by both solar flares and CMEs, which are associated with the impulsive phase of the flares and, very likely, with the acceleration phase of the CMEs.  相似文献   

14.
The results of a series of radar studies of the sun at 38.2 MHz are presented. The echoes imply ever-present compressional waves in the corona, and these waves are likely associated with coronal heating. Some echoes are refracted by plasma clouds high in the corona. Other echoes are reflected by dense plasma irregularities moving outward very slowly at 0 to 20 km/sec. These are sometimes found as far out as three solar radii from the sun's center. Suggestions for future solar radar experiments and the need for them are outlined.  相似文献   

15.
We present the results from modeling the coronal mass ejection (CME) properties that have an effect on the Faraday rotation (FR) signatures that may be measured with an imaging radio antenna array such as the Murchison Widefield Array (MWA). These include the magnetic flux rope orientation, handedness, magnetic-field magnitude, velocity, radius, expansion rate, electron density, and the presence of a shock/sheath region. We find that simultaneous multiple radio source observations (FR imaging) can be used to uniquely determine the orientation of the magnetic field in a CME, increase the advance warning time on the geoeffectiveness of a CME by an order of magnitude from the warning time possible from in-situ observations at L 1, and investigate the extent and structure of the shock/sheath region at the leading edge of fast CMEs. The magnetic field of the heliosphere is largely “invisible” with only a fraction of the interplanetary magnetic-field lines convecting past the Earth; remote sensing the heliospheric magnetic field through FR imaging from the MWA will advance solar physics investigations into CME evolution and dynamics.  相似文献   

16.
R. P. Kane 《Solar physics》2009,255(1):163-168
The number of coronal mass ejections (CMEs) erupting from the Sun follows a trend similar to that of sunspot numbers during the rising and maximum phase of the solar cycle. In the declining phase, the CME number has large fluctuations, dissimilar to those of sunspot numbers. In several studies of solar – interplanetary and solar – terrestrial relationships, the sunspot numbers and the 2800-MHz flux (F10) are used as representative of solar activity. In the rising phase, this may be adequate, but in the declining phase, solar parameters such as CMEs may have a different behaviour. Cosmic-ray Forbush decreases may occur even when sunspot activity is low. Therefore, when studying the solar influence on the Earth, one has to consider that although geomagnetic conditions at solar maximum will be disturbed, conditions at solar minimum may not be necessarily quiet.  相似文献   

17.
The Sun is the celestial body in the sky with the closest relationship with the Earth. The violent eruptive activities happening on the Sun can greatly impact the human living environment and lead to disastrous consequences. It is well accepted that solar eruptions including the solar flare, prominence eruption and coronal mass ejection are the different manifestations of a single physical process powered by the magnetic free energy gradually stored in the corona prior to eruptions. Therefore, mapping the three-dimensional structure of coronal magnetic field is a prerequisite to understand the initiation mechanism of solar eruptions. Due to the technological and methodological difficulties, routine observations of the coronal magnetic field are still unavailable. Therefore, a number of methods have been developed to reconstruct the coronal magnetic field. This paper mainly reviews the applications of various reconstruction methods to the studies of the solar eruptions in the recent ten years.  相似文献   

18.
R. Ramesh 《Solar physics》2000,196(1):213-220
We report low-frequency observations of an enhancement in the solar corona prior to the halo coronal mass ejection of 23 October 1997, with the Gauribidanur radioheliograph. The Sun was `quiet' and no radio bursts were observed either prior to or in the aftermath of the event. The radio method would be useful in studying the pre-event structures associated with the eruptive solar activity, particularly from the ground.  相似文献   

19.
Solar filaments are an intriguing phenomenon, like cool clouds suspended in the hot corona.Similar structures exist in the intergalactic medium as well. Despite being a long-studied topic, solar filaments have continually attracted intensive attention because of their link to coronal heating, coronal seismology, solar flares and coronal mass ejections(CMEs). In this review paper, by combing through the solar filament-related work done in the past decade, we discuss several controversial topics, such as the fine structures, dynamics, magnetic configurations and helicity of filaments. With high-resolution and highsensitivity observations, combined with numerical simulations, it is expected that resolving these disputes will definitely lead to a huge leap in understanding the physics related to solar filaments, and even shed light on galactic filaments.  相似文献   

20.
We examine how the initial state (pre-event corona) affects the numerical MHD simulation for a coronal mass ejection (CME). Earlier simulations based on a pre-event corona with a homogeneous density and temperature distribution at the lower boundary (i.e., solar surface) have been used to analyze the role of streamer properties in determining the characteristics of loop-like transients. The present paper extends these studies to show how a broader class of global coronal properties leads not only to different types of CMEs, but also modifies the adjacent quiet corona and/or coronal holes.We consider four pre-event coronal cases: (1) constant boundary conditions and a polytropic gas with = 1.05; (2) non-constant (latitude dependent) boundary conditions and a polytropic gas with = 1.05; (3) constant boundary conditions with a volumetric energy source and = 1.67; (4) non-constant (latitude dependent) boundary conditions with a volumetric energy source and = 1.67. In all models, the pre-event magnetic fields separate the corona into closed field regions (streamers) and open field regions. The CME's initiation is simulated by introducing at the base of the corona, within the streamer region, a standard pressure pulse and velocity change. Boundary values are determined using MHD characteristic theory.The simulations show how different CMEs, including loop-like transients, clouds and bright rays, might occur. There are significant new features in comparison to published results. We conclude that the pre-event corona is a crucial factor in dictating CMEs properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号