首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present JHK colors observed for ten asteroids and synthesized JHK colors for seven meteorite groups, samples of iron and nickel metal, pyroxene, olivine, feldspar, a lunar anorthite and some terrestrial mineral samples. Pronounced differences are apparent between the chondritic and achondritic meteorite classes; the chondritic classes show less subdued trends in J-H color which reflect their metamorphic grade We find small but significant differences between the JHK colors of the predominant C and S classes of asteroids. All JHK colors of asteroids observed here fall within the limited domain defined by the various chondritic and iron-rich meteorites but are strikingly different from those of most achondritic meteorites  相似文献   

2.
Abstract— We review the petrology of Baszkówka, present new microprobe data on mineral constituents, and propose a model for surface properties of the parent body consistent with these data. The low shock index and high porosity of the Baszkówka L5 chondrite mean that considerable primary textural and petrographic detail is preserved, allowing insight into the structure and evolution of the parent body. This meteorite formed in a sedimentary environment resembling that in which pyroclastic rocks are deposited. The origin of the component chondrules, achondritic fragments (mostly olivine and pyroxene aggregates), chondritic‐achondritic aggregates, and compound chondrules can be explained by invoking collision of 2 melted or partially melted planetesimals, each covered with a thin crust. This could have happened at an early stage in the evolution of the solar system, between 1 and 2 Myr after its origin. The collision resulted in the formation of a cloud containing products of earlier magmatic crystallization (chondrite and achondrite fragments) from which new chondrules were created. Particle collision in this cloud produced fragmented chondrules, chondritic‐achondritic aggregates, and compound chondrules. Within this low‐density medium, these particles were accreted on the surface of the larger of the planetesimals involved in the collision. The density of the medium was low enough to prevent grain‐size sorting of the components but high enough to prevent the total loss of heat and to enable the welding of fragments on the surface of the body. The rock material was homogenized within the cloud and, in particular, within the zone close to the planetesimal surface. The hot material settled on the surface and became welded as molten or plastic metal, and sulfide components cemented the grains together. The process resembled the formation of welded ignimbrites. Once these processes on the planetesimal surface were completed, no subsequent recrystallization occurred. The high porosity of the Baszkówka chondrite indicates that the meteorite comes from a near‐surface part of the parent body. Deeper parts of the planetesimal would have been more massive because of compaction.  相似文献   

3.
Abstract— We have measured excess Ir and depletion of 14C, two independent indicators of cosmic material, in peat cores from the central Tunguska impact site. Both Ir and 14C show pronounced anomalies in the same stratigraphical depth interval. We have estimated an integral deposition of nonradioactive cosmogenic C of 6.8 ± 1.0 mg C cm?2, and an integrated Ir deposition of 5.9 ± 1.2 pg Ir cm?2. The very high C/Ir ratio and a deduced δ13C value of +55 ± 10% relative to V Pee Dee Belemnite (VPDB) of the impactor material found in this study points towards a cometary type impactor, rather than a chondritic or achondritic asteroidal type impactor.  相似文献   

4.
Abstract– A large number of micrometeorites (MMs) was recovered from glacier deposits located at the north‐eastern passive margin of the Novaya Zemlya glacier sheet. Melted, scoriaceous, and unmelted micrometeorites (UMMs) are present. Unmelted micrometeorites are dominated mostly by chondritic matter, but also a few achondritic MMs are present. Here we report the discovery of four UMMs that, according to their texture, mineralogy, and chemistry, are identified as basaltic breccias. Mineral chemistry and Fe/Mn ratios of two basaltic micrometeorites indicate a possible relationship with eucrites and/or mesosiderites, whereas two others seem to have parents, which appear not to be present in our meteorite collections. The basaltic breccia UMMs constitute 0.5% of the total population of the Novaya Zemlya MM suite. This content should be lowered to 0.25% because the Novaya Zemlya MM collection appears to be biased with carbonaceous UMMs being underrepresented.  相似文献   

5.
Abstract— We review the meteoritical and astronomical literature to answer the question: What is the evidence for the importance of ordinary chondritic material to the composition of the asteroid belt? From the meteoritical literature, we find that currently (1) our meteorite collections sample at least 135 different asteroids; (2) out of 25+ chondritic meteorite parent bodies, 3 are (by definition) ordinary chondritic; (3) out of 14 chondritic grouplets and unique chondrites, 11 are affiliated with a carbonaceous group/clan of chondrites; (4) out of 24 differentiated groups of meteorites, only the HE iron meteorites clearly formed from ordinary chondritic precursor material; (5) out of 12 differentiated grouplets and unique differentiated meteorites, 8 seem to have had carbonaceous chondritic precursors; (6) a high frequency of carbonaceous clasts in ordinary chondritic breccias suggests that ordinary chondrites have been embedded in a swarm of carbonaceous material. The rare occurrence (only one example) of ordinary chondritic clasts in carbonaceous chondritic breccias indicates that ordinary chondritic material has not been widespread in the asteroid belt; (7) cosmic spherules, micrometeorites, and stratospheric interplanetary dust particles—believed to represent a less biased sampling of asteroidal material—show that only a very small fraction (less than ~1%) of asteroidal dust has an ordinary chondritic composition. From the astronomical literature, we find that currently (8) spectroscopic surveys of the main asteroid belt are finding more and more nonordinary chondritic primitive material in the inner main belt; (9) the increase in spectroscopic data has increased the inferred mineralogical diversity of main belt asteroids; and (10) no ordinary chondritic asteroids have been directly observed in the main belt. These lines of evidence strongly suggest a scenario in which ordinary chondritic asteroids were never abundant in the main belt. The S-type asteroids may currently be primarily differentiated, but the precursor material is more likely to have been carbonaceous chondritic, not ordinary chondritic. Historically, carbonaceous material could have dominated the entire main belt. This could explain the presence in the inner main belt of asteroids linked to the primitive carbonaceous chondrites, and the absence of asteroids linked to the ordinary chondrites. The implications of this scenario for the asteroid heating mechanism(s) are briefly discussed.  相似文献   

6.
We used chemical equilibrium and chemical kinetic calculations to model chemistry of the volatiles released by heating different types of carbonaceous, ordinary and enstatite chondritic material as a function of temperature and pressure. Our results predict the composition of atmospheres formed by outgassing during accretion of the Earth and other terrestrial planets. Outgassing of CI and CM carbonaceous chondritic material produces H2O-rich (steam) atmospheres in agreement with the results of impact experiments. However, outgassing of other types of chondritic material produces atmospheres dominated by other gases. Outgassing of ordinary (H, L, LL) and high iron enstatite (EH) chondritic material yields H2-rich atmospheres with CO and H2O being the second and third most abundant gases. Outgassing of low iron enstatite (EL) chondritic material gives a CO-rich atmosphere with H2, CO2, and H2O being the next most abundant gases. Outgassing of CV carbonaceous chondritic material gives a CO2-rich atmosphere with H2O being the second most abundant gas. Our results predict that the atmospheres formed during accretion of the Earth and Mars were probably H2-rich unless the accreted material was dominantly CI and CM carbonaceous chondritic material. We also predict significant amounts of S, P, Cl, F, Na, and K in accretionary atmospheres at high temperatures (1500-2500 K). Finally, our results may be useful for interpreting spectroscopic observations of accreting extrasolar terrestrial planets.  相似文献   

7.
Basaltic micrometeorites (MMs) derived from HED‐like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s?1) and is more compatible with higher velocities which may suggest a near‐Earth asteroid source dominates the current dust production of basaltic MMs.  相似文献   

8.
Abstract— Previous studies of unmelted micrometeorites (>50 μm) recovered from Antarctic ice have concluded that chondrules, which are a major component of chondritic meteorites, are extremely rare among micrometeorites. We report the discovery of eight micrometeorites containing chondritic igneous objects, which strongly suggests that at least a portion of coarse‐grained crystalline micrometeorites represent chondrule fragments. Six of the particles are identified as composite micrometeorites that contain chondritic igneous objects and fine‐grained matrix. These particles suggest that at least some coarse‐grained micrometeorites (cgMMs) may be derived from the same parent bodies as fine‐grained micrometeorites. The new evidence indicates that, contrary to previous suggestions, the parent bodies of micrometeorites broadly resemble the parent asteroids of chondrulebearing carbonaceous chondrites.  相似文献   

9.
Abstract— Four parameters of low‐field magnetic susceptibility (bulk value, frequency dependence, degree of anisotropy, and ellipsoid shape) have been determined for 321 stony meteorites from the National Collection of Canada. These parameters provide a basis for rapid, non‐destructive, and accurate meteorite classification as each meteorite class tends to have a distinct range of values. Chondrites show a clear trend of increasing bulk susceptibility from LL to L to H to E within the 3.6 to 5.6 logχ (in 10−9 m3/kg) range, reflecting increasing Fe‐Ni metal and Fe‐Ni sulfide content. Achondrite values range in logχ from 2.4 to 4.7 and primitive achondrites from 4.2 to 5.7. Frequency dependence is observed, using 19,000 Hz and 825 Hz, with variations in strength among meteorite classes and individual specimen dependence ranging from 1–25.6%. Degrees of anisotropy range from 1 to 53% with both oblate and prolate ellipsoids present. The aubrite class is marked by high degrees of anisotropy, low bulk magnetic susceptibility, and prolate fabric. Camel Donga is set apart from other eucrites, marked by higher bulk susceptibility, degree of anisotropy, and magnitude of oblate ellipsoid shape. The Shergotty, Nakhla, and Chassigny (SNC) meteorites show subclass distinction using frequency dependence and Chassigny is set apart with a relatively strong oblate fabric. The presence of both strong oblate and prolate fabrics among and within meteorite classes of chondritic and achondritic material points to a complex, multi‐mechanism origin for anisotropy, more so than previously thought, and likely dominated by impact processes in the later stages of stony parent body formation.  相似文献   

10.
Abstract— We have studied a unique impact-melt rock, the Ramsdorf L chondrite, using optical and scanning microscopy and electron microprobe analysis. Ramsdorf contains not only clast-poor impact melt (Begemann and Wlotzka, 1969) but also a chondritic portion (>60 g) with what appears at low magnification to be a normal, well-defined chondritic texture. However, detailed studies at high magnification show that >90 vol% of the crystals in the chondritic portion were largely melted by the impact: the chondrules lack normal microtextures and are ghosts of the original features. The only relics from the precursor chondrules are olivine crystals, which have the highest melting temperature (~1620 °C). Pyroxene-rich chondrules were so extensively melted that no phenocrysts were preserved and the melt crystallized in situ before significant mixing with exterior olivine-rich melts. Fine-grained pyroxene chondrule ghosts have sharper boundaries with the matrix than porphyritic olivine and pyroxene chondrule ghosts, probably because pyroxene-rich melts are significantly more viscous. Complex textures that formed by injection of melt along cracks and fractures in relic olivines suggest that the chondritic portion of Ramsdorf formed directly from petrologic type 3–4 material by strong shock. We infer that Ramsdorf was largely melted by shock pressures of ~75–90 GPa and that chondrule ghosts and relic olivine phenocrysts were locally preserved by rapid cooling. Quenching was not due to the addition of cold clasts into the melt but to heterogeneous shock heating that only caused internal melting of large olivines and pyroxenes. Ramsdorf appears to be one of the most heavily shocked meteorites that has retained some trace of its original texture.  相似文献   

11.
We used chemical equilibrium calculations to model thermal metamorphism of ordinary chondritic material as a function of temperature, pressure, and trace element abundance and use our results to discuss volatile mobilization during thermal metamorphism of ordinary chondrite parent bodies. We compiled trace element abundances in H-, L-, and LL-chondrites for the elements Ag, As, Au, Bi, Br, Cd, Cs, Cu, Ga, Ge, I, In, Pb, Rb, Sb, Se, Sn, Te, Tl, and Zn, and identified abundance trends as a function of petrographic type within each class. We calculated volatility sequences for the trace elements in ordinary chondritic material, which differ significantly from the solar nebula volatility sequence. Our results are consistent with open-system thermal metamorphism. Abundance patterns of Ag and Zn remain difficult to explain.  相似文献   

12.
Abstract— We used synchrotron X‐ray microtomography to image in 3‐dimensions (3D) eight whole chondrules in a ?1 cm3piece of the Renazzo (CR) chondrite at ?17 μm per volume element (voxel) edge. We report the first volumetric (3D) measurement of metal/silicate ratios in chondrules and quantify indices of chondrule sphericity. Volumetric metal abundances in whole chondrules range from 1 to 37 volume % in 8 measured chondrules and by inspection in tomography data. We show that metal abundances and metal grain locations in individual chondrules cannot be reliably obtained from single random 2D sections. Samples were physically cut to intersect representative chondrules multiple times and to verify 3D data. Detailed 2D chemical analysis combined with 3D data yield highly variable whole‐chondrule Mg/Si ratios with a supra‐chondritic mean value, yet the chemically diverse, independently formed chondrules are mutually complementary in preserving chondritic (solar) Fe/Si ratios in the aggregate CR chondrite. These results are consistent with localized chondrule formation and rapid accretion resulting in chondrule + matrix aggregates (meteorite parent bodies) that preserve the bulk chondritic composition of source regions.  相似文献   

13.
Abstract— Grain-by-grain analytical electron microscope analyses of two micrometeorites, or interplanetary dust particles (IDPs), of the chondritic porous subtype, show the presence of rare barite (BaSO4) and magnesium carbonate, probably magnesite. Salt minerals in chondritic porous (CP) IDPs give evidence for in situ aqueous alteration in their parent bodies. The uniquely high barium content of CP IDP W7029*C1 is consistent with barite precipitation from a mildly acidic (pH > ~5) aqueous fluid at temperatures below 417 K and low oxygen fugacity. The presence of magnesite in olivine-rich, anhydrous CP IDP W7010*A2 is evidence that carbonate minerals occur in both the chondritic porous and chondritic smooth subtypes of chondritic IDPs. Citing Schramm et al. (1989) for putative asteroidal-type aqueous alteration in IDPs and probable sources of chondritic IDPs, salt minerals in CP IDPs could support low-temperature aqueous activity in nuclei of active short-period comets.  相似文献   

14.
We present a survey of 97 spectra of mainly sporadic meteors in the magnitude range +3 to −1, corresponding to meteoroid sizes 1-10 mm. For the majority of the meteors, heliocentric orbits are known as well. We classified the spectra according to relative intensities of the lines of Mg, Na, and Fe. Theoretical intensities of these lines for a chondritic composition of the meteoroid and a wide range of excitation and ionization conditions were computed. We found that only a minority of the meteoroids show chondritic composition. Three distinct populations of Na-free meteoroids, each comprising ∼10% of sporadic meteoroids in the studied size range, were identified. The first population are meteoroids on asteroidal orbits containing only Fe lines in their spectra and possibly related to iron-nickel meteorites. The second population are meteoroids on orbits with small perihelia (q?0.2 AU), where Na was lost by thermal desorption. The third population of Na-free meteoroids resides on Halley type cometary orbits. This material was possibly formed by irradiation of cometary surfaces by cosmic rays in the Oort cloud. The composition of meteoroids on Halley type orbits is diverse, probably reflecting internal inhomogeneity of comets. On average, cometary dust has lower than chondritic Fe/Mg ratio. Surprisingly, iron meteoroids prevail among millimeter-sized meteoroids on typical Apollo-asteroid orbits. We have also found varying content of Na in the members of the Geminid meteoroid stream, suggesting that Geminid meteoroids were not released from their parent body at the same time.  相似文献   

15.
Petrofabrics in chondrites have the potential to yield important information on the impact evolution of chondritic parent asteroids, but studies involving chondritic petrofabrics are scarce. We undertook an analysis of the Pu?tusk H chondrite regolith breccia. Measurements of anisotropy of magnetic susceptibility and quantitative tomographic examination of metal grains are presented here and the results are compared with petrographic observations. The major fabric elements are in Pu?tusk shear fractures cutting the light‐colored chondritic clasts as well as brittly and semibrittly deformed, cataclased fragments in dark matrix of regolith breccia. Cataclasis is accompanied by rotation of silicate grains and frictional melting. Fabric of metal grains in chondrite is well defined and coherently oriented over the breccia, both in the clasts and in the cataclastic matrix. Metal grains have prolate shapes and they are arranged into foliation plane and lineation direction, both of which are spatially related and kinematically compatible to shear‐dominated deformational features. We argue that the fabric of Pu?tusk was formed in response to impact‐related noncoaxial shear strain. Deformation promoted brittle cataclastic processes and shearing of silicates, and, simultaneously, allowed for ductile metal to develop foliation and lineation. We suggest that plastic flow is the most probable mechanism for the deformation of metal grains in the shear‐dominated strain field. The process led also to the formation of large metal nodules and bands in the dark matrix of breccia.  相似文献   

16.
Abstract— We studied 26 IAB iron meteorites containing silicate‐bearing inclusions to better constrain the many diverse hypotheses for the formation of this complex group. These meteorites contain inclusions that fall broadly into five types: (1) sulfide‐rich, composed primarily of troilite and containing abundant embedded silicates; (2) nonchondritic, silicate‐rich, comprised of basaltic, troctolitic, and peridotitic mineralogies; (3) angular, chondritic silicate‐rich, the most common type, with approximately chondritic mineralogy and most closely resembling the winonaites in composition and texture; (4) rounded, often graphite‐rich assemblages that sometimes contain silicates; and (5) phosphate‐bearing inclusions with phosphates generally found in contact with the metallic host. Similarities in mineralogy and mineral and O‐isotopic compositions suggest that IAB iron and winonaite meteorites are from the same parent body. We propose a hypothesis for the origin of IAB iron meteorites that combines some aspects of previous formation models for these meteorites. We suggest that the precursor parent body was chondritic, although unlike any known chondrite group. Metamorphism, partial melting, and incomplete differentiation (i.e., incomplete separation of melt from residue) produced metallic, sulfide‐rich and silicate partial melts (portions of which may have crystallized prior to the mixing event), as well as metamorphosed chondritic materials and residues. Catastrophic impact breakup and reassembly of the debris while near the peak temperature mixed materials from various depths into the re‐accreted parent body. Thus, molten metal from depth was mixed with near‐surface silicate rock, resulting in the formation of silicate‐rich IAB iron and winonaite meteorites. Results of smoothed particle hydrodynamic model calculations support the feasibility of such a mixing mechanism. Not all of the metal melt bodies were mixed with silicate materials during this impact and reaccretion event, and these are now represented by silicate‐free IAB iron meteorites. Ages of silicate inclusions and winonaites of 4.40‐4.54 Ga indicate this entire process occurred early in solar system history.  相似文献   

17.
Abstract— Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029*A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Snrich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend towards non-chondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.  相似文献   

18.
We collected 1,245 spherules from the Central Indian Ocean basin by Magnetic cosmic dust collection (MACDUC) experiment raking the deep sea floor. This collection ranks among the large deep sea collections of cosmic dust. For this study, 168 particles are analyzed with SEM-EDS to characterise their cosmic nature and identify the processes that their morphological features, textures and chemical compositions reveal. All the three basic types of cosmic spherules have been identified: I-type, S-type and the G-type. The silicate or the S-type spherules are dominant in this collection. In all, 115 spherules were sectioned, polished and analyzed for major elements. I-type spherules are mainly composed of Fe and Ni oxides, some have metallic cores where appreciable amounts of Co is observed in addition to glassy phases with lithophile elements are also observed in these spherules. These evidences are supportive of the view that the I-type spherules could be metal grains from carbonaceous/unequilibrated chondritic bodies. The S-type spherules show elemental composition of Mg, Al, Si, Ca, Fe, and Ni approximately similar to chondritic compositions. In addition, some other rare particles such as an S-type sphere which contains a large zoned relict chromite crystal, other spheres with a semi-porphyritic/barred olivine texture are also observed. While most the S-type spherules appear to have carbonaceous chondrites as their parent bodies, the relict grain bearing spherule shows distinctly an ordinary chondritic parent body.  相似文献   

19.
Abstract— A series of experiments were designed to investigate the textural and compositional changes that take place during disequilibrium partial melting of chondritic material. Chips of the L6 chondrite, Leedey, were heated at 1200 °C and log ?O2 = IW‐1 for durations of 1 h to 21 days. We observed a progression of kinetically‐controlled textural changes in melt and restite minerals and changes in the liquidus mineralogy in response to factors such as volatile loss. During the course of the experiments, both olivine and orthopyroxene recrystallized at different times. Rare relic chondrules could still be identified after 21 days. The silicate melts that form are very heterogeneous, in terms of both major and trace element chemistry, reflecting heterogeneity of the localized mineral assemblage, particularly with respect to phosphates and clinopyroxene. Metal‐sulfide melts formed in short‐duration runs are also heterogeneous. The experimental data are relevant to aspects of the genesis of primitive achondrites such as the acapulcoites. The observed textures are consistent with a model for acapulcoite petrogenesis in which silicate melting was limited to only a few volume percent of the chondritic source rock. The experiments are also relevant to the behavior of chondritic material that has been partially melted in an impact environment.  相似文献   

20.
A new photoelectric polarization curve for Vesta is presented. It is incompatible with Lyot's photographic curve which appears to be inaccurate. The new polarization curve indicates that the reflectivity of Vesta is higher than that of the Moon, and a pre;iminary value of 0.25 ± 0.07 for the reflectivity in the V is suggested. This implies an absolute diameter of about 510 km, a value consistent with the diameter of Vesta calculated from its mass, assuming an achondritic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号