首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

2.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density. It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbu- lence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratiˉcation is a?ected to diffierent extent at diffierent times of the day. When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings,thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature. As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

3.
The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin–Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.  相似文献   

4.
We present a scheme for parameterising scalar transfer in the urban boundary layer, which is divided into an inertial layer and a roughness layer. The latter is further divided into a shear layer and a canyon layer. In the inertial layer, scalar transfer is determined by turbulence related to canyon macroscopic features, while in the roughness layer, it is determined by shear-generated turbulence, canyon vortex and vortex-generated turbulence. We first describe a conceptual model for the canyon flow and the aerodynamic resistance network, and then estimate the resistances from the point of view of drag partition and vortex advection. The results are compared with the measurements from wind-tunnel experiments. It is found that for small canyon aspect ratio, σc, the transfer velocity increases with σc, reaching a maximum at around σc=0.5 and then decreases with σc. We also show that the scheme is not sensitive to adjustable parameters  相似文献   

5.
A semi-analytical scheme is proposed to parametrize the Obukhov stability parameter \(\zeta \) (= \(z/L\) ; \(z\) is the height above the ground and \(L\) is the Obukhov length) in terms of the bulk Richardson number ( \(R_{iB}\) ) in unstable conditions within the framework of Monin–Obukhov similarity (MOS) theory. The scheme involves, (i) a solution of a cubic equation in \(\zeta \) whose coefficients depend on the gradient Richardson number ( \(R_{i}\) ), and (ii) a relationship between \(R_{i}\) and \(R_{iB}\) . The proposed scheme is applicable for a wide range (i) \(-5\le R_{iB}\le 0\) , (ii) \(0\le \hbox {ln}(z_{0}/z_{h})\le 29.0\) , and (iii) \(10\le z/z_{0}\le 10^{5}\) and performs relatively better than all other schemes in terms of accuracy in computation of surface-layer transfer coefficients. The absolute errors in computing the transfer coefficients do not exceed 7 %. The analysis presented here is found to be valid for different \(\gamma _{m}\) and \(\gamma _{h}\) appearing in the expressions of the similarity functions \(\varphi _{m}\) and \(\varphi _{h}\) (representing non-dimensional wind and temperature profiles), so long as the ratio of \(\gamma _{m}\) to \(\gamma _{h} \ge 1\) . The improved scheme can be easily employed in atmospheric modelling for a comprehensive range of \(R_{iB}\) and a variety of surfaces.  相似文献   

6.
A Wind Tunnel Model for Quantifying Fluxes in the Urban Boundary Layer   总被引:9,自引:6,他引:3  
Transport of pollution and heatout of streets into the boundary layer above is not currently understood and so fluxes cannot be quantified. Scalar concentration within the street is determined by the flux out of it and so quantifying fluxes for turbulent flow over a rough urban surface is essential. We have developed a naphthalene sublimation technique to measure transfer from a two-dimensional street canyon in a wind tunnel for the case of flow perpendicular to the street. The street was coated with naphthalene, which sublimes at room temperature, so that the vapour represented the scalar source. The transfer velocity wT relates the flux out of the canyon to the concentration within it and is shown to be linearly related to windspeed above the street. The dimensionless transfer coefficient wT/U represents the ventilation efficiency of the canyon (here, wT is a transfer velocity,U is the wind speed at the boundary-layer top). Observed values are between 1.5 and 2.7 ×10-3 and, for the case where H/W0 (ratio of buildingheight to street width), values are in the same range as estimates of transfer from a flat plate, giving confidence that the technique yields accurate values for street canyon scalar transfer. wT/U varies with aspect ratio (H/W), reaching a maximum in the wake interference regime (0.3 < H/W < 0.65). However, when upstream roughness is increased, the maximum in wT/U reduces, suggesting that street ventilation is less sensitive to H/W when the flow is in equilibrium with the urban surface. The results suggest that using naphthalene sublimation with wind-tunnel models of urban surfaces can provide a direct measure of area-averaged scalar fluxes.  相似文献   

7.
A New Aerodynamic Parametrization for Real Urban Surfaces   总被引:2,自引:5,他引:2  
This study conducted large-eddy simulations (LES) of fully developed turbulent flow within and above explicitly resolved buildings in Tokyo and Nagoya, Japan. The more than 100 LES results, each covering a 1,000 $\times $ 1,000 m $^{2}$ area with 2-m resolution, provide a database of the horizontally-averaged turbulent statistics and surface drag corresponding to various urban morphologies. The vertical profiles of horizontally-averaged wind velocity mostly follow a logarithmic law even for districts with high-rise buildings, allowing estimates of aerodynamic parameters such as displacement height and roughness length using the von Karman constant $=$ 0.4. As an alternative derivation of the aerodynamic parameters, a regression of roughness length and variable Karman constant was also attempted, using a displacement height physically determined as the central height of drag action. Although both the regression methods worked, the former gives larger (smaller) values of displacement height (roughness length) by 20–25 % than the latter. The LES database clearly illustrates the essential difference in bulk flow properties between real urban surfaces and simplified arrays. The vertical profiles of horizontally-averaged momentum flux were influenced by the maximum building height and the standard deviation of building height, as well as conventional geometric parameters such as the average building height, frontal area index, and plane area index. On the basis of these investigations, a new aerodynamic parametrization of roughness length and displacement height in terms of the five geometric parameters described above was empirically proposed. The new parametrizations work well for both real urban morphologies and simplified model geometries.  相似文献   

8.
局地相似性关系在城市边界层中的适用性验证   总被引:1,自引:0,他引:1  
利用中国科学院大气物理研究所325 m铁塔在2003年8月期间47和120 m高度上的湍流观测资料,对局地相似性关系在城市边界层的适用性进行了检验。结果表明:47 m高度仍属于城市冠层之上的近地面常通量层,莫宁-奥布霍夫相似性关系基本适用。但120 m高度则基本属于近地面层与自由对流层之间的过渡高度,在该处,相似性关系部分适用。同时,给出了不同的层结稳定度条件下47和120 m高度上的无量纲速度和温度标准差与稳定度之间的局地相关表达式。  相似文献   

9.
不稳定层结下的热岛环流   总被引:1,自引:0,他引:1       下载免费PDF全文
采用对数压力坐标系的大气热力、动力方程组,分析了由于城市的加热和摩擦作用,在大气层结不稳定情况下的热岛环流,给出了表征热岛基本特征的垂直运动,水平运动和温度场的空间结构,从理论上证实了热岛环流在不稳定城市边界层中存在的可能性,并得出了如下主要结论:(1) 垂直运动在市区是上升运动,在郊区是下沉运动,在低层z=150m处有一闭合中心;(2) 流场在市区上空呈一层波动,波谷在上风区,波峰在下风区,波长为城市半宽的4倍;(3) 地面的高温区出现在城市的下风区,且无逆温层出现。  相似文献   

10.
采用北京市国家大气探测试验基地2017年5月1日至2019年8月31日的微波辐射计观测结果,通过位温气块法反演了该地区的大气边界层高度,统计其日变化和月际变化特征,并与相应的探空反演结果进行对比.结果表明:日间大气边界层高度的变化特征与日照时长对应关系很好.除热力作用外,边界层高度受地面风速的影响较大,近地面的较强大风...  相似文献   

11.
The simultaneous operation of a three-axis Doppler sodar system in the centralurban area of Rome and two similar systems in the suburban area, forming atriangle about 20 km on each side, provided evidence of solitary-type wavesin the urban boundary layer. Three events, each lasting from a few minutes toabout 30 min, and ranging in depth from the minimum range of the sodar (39 m) to over 500 m, are reported here. Two events were recognizable onall three sodar records while the third event could be observed at the urbanlocation only. Time-height acoustic echo intensity records showed no-echoregions within the wave indicating transport of trapped recirculating air.This is typical of large amplitude solitary waves. The time series plots ofsodar-derived vertical wind velocity revealed a maximum peak-to-peakvariation of about 5 m s-1 during periods of wave-associated disturbance.The vertical velocity is found to increase with height up to the top of the closedcirculation within the wave and decreases further above. The normalisedamplitude-wavelength relationship for the two events indicates that theobserved waves are close to a strongly nonlinear regime.  相似文献   

12.
天津城市边界层湍流统计特征   总被引:1,自引:2,他引:1  
利用2008年2月1~28日在天津气象塔上观测的超声风、温资料和常规风、温及湿梯度资料,计算了天津城市边界层无量纲湍流速度方差、湍流温度方差、感热通量、动量通量和湍流动能。结果表明,在不稳定层结条件下,40m高度上无量纲湍流速度方差和湍流温度方差遵循莫宁-奥布克霍夫相似理论,在220m高度上只有垂直方向上的湍流速度方差...  相似文献   

13.
14.
北京城市重烟尘雾与水雾过程的边界层结构   总被引:7,自引:2,他引:7  
周小刚  王强 《气象科技》2004,32(6):404-409
分析1999年11月1日至12月20日北京城市雾综合性观测试验中5次雾过程的实测资料,对如何区分重烟尘雾与水雾过程给出了判定方法,并对重烟尘雾与水雾过程的边界层结构特征作了探讨。主要结论为:从能见度、相对湿度、长波辐射平衡3个方面可以区分重烟尘雾过程和水雾过程;由于重烟尘雾和水雾的物理化学性质差异很大,对城市大气边界层结构产生的影响也不同,因此造成它们在相对湿度逆温层、风速分布、水汽变化等方面也有很大差异。  相似文献   

15.
城市边界层动量和保守物通量的特征   总被引:2,自引:0,他引:2  
利用2005年1-5月北京325 m气象塔47 m高度的湍流脉动资料(风速、温度、水汽和CO2),对城市边界层冠层内的湍流运动统计特征(相似关系、高阶矩、通量和谱等)进行了分析。其中,谱分析的结果表明,城市冠层内稳定度对湍流谱的影响比较小,而水平风速的影响比较大。因此,速度和温度的相似关系在夜间稳定条件下也成立。但是,由于水汽和CO2还受其他因素的影响,相似关系并不适用。更高阶矩的研究表明它们的陡峭度与偏斜度之间存在平方关系。而水汽和CO2之间也存在差异,它们的通量日变化特征明显不同,CO2通量的日变化更能体现人类活动的影响。同时,感热通量、潜热通量和CO2通量存在季节变化,尤其是潜热通量季节差异很大。  相似文献   

16.
精细的城市边界层模拟中热力粗糙度引入的初步研究   总被引:1,自引:4,他引:1  
周荣卫  蒋维楣  刘罡 《大气科学》2007,31(4):611-620
运用南京大学城市尺度边界层模式(UBLM)以100 m水平网格距的精细高分辨率,诊断分析小规模城市(水平范围在一二十公里)的气象环境与边界层结构。就高分辨率精细模拟分析研究了两个问题:(1)在模式中引入热力粗糙度,就引入热力粗糙度前后的模拟结果与实测结果进行对比,结果表明引入后的模拟结果与自动气象站的观测结果吻合较好,能够很好地反映出地面气温的日变化规律。冬季,白天不引入热力粗糙度比引入热力粗糙度会高估小规模城市地区感热通量约60 W/m2,而对乡间农作物地区约10 W/m2。(2)以四种不同水平网格距对同一下垫面及气象条件进行诊断分析,结果表明以100 m网格距精细模拟效果明显优于以较大网格距进行的模拟效果。以这样的精细高分辨率模式所获模拟结果分析了小规模城市的边界层特征,表明:冬季白天和夜间小规模城市与乡村气温差分别为0.8℃和0.6℃;风速明显低于乡村地区;湍能高于乡村地区,白天和夜间湍能一般为乡村的3倍左右;白天混合层发展较乡村迅速,且高度高于乡村地区。这样的特征在当今城市规划布局工作中,为特大型城市的卫星城市的建设规划提供了有益的科学实验依据。模拟效果表明以如此高的水平分辨率实施的模式和模拟是可行和有意义的。  相似文献   

17.
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.  相似文献   

18.
一个对流边界层大涡模式的建立与调试   总被引:12,自引:4,他引:12  
蔡旭晖  陈家宜 《大气科学》1995,19(4):415-421
本文介绍一个适合于对流边界层的大涡模式的建立及其调试结果。该大涡模式建立过程中注重于计算的节省,同时也强调原理与方法的简单和合理性。模式的调试表明,对于平坦均一地形的情况,模拟可以获得合理的结果。调试同时显示了模式对较低水平分辨率的适用条件,以及模式应用于模拟较大水平范围问题的可能性。  相似文献   

19.
佟华  陈仲良  桑建国 《大气科学》2004,28(6):957-978
由于城市表面复杂的下垫面的影响,使得城市边界层风温场结构较其他下垫面有很大不同.作者通过将城市中500 m网格内的各种地表类型,按照各自在网格中所占的百分比及各自的地表参数加权平均,得到此网格的平均的地表参数,以此准确反映下垫面的情况,建立分辨率为500 m的城市边界层能量平衡模式,将此城市边界层能量平衡模式嵌入动力学框架,并用中尺度模式MM5作为初始条件和边界条件,建立一个既考虑中尺度背景场又详细考虑城市下垫面复杂性与多样性的城市边界层模式系统.将模式系统运用于香港复杂地形下的边界层特点的模拟研究.通过与观测值的比较,模式能够较准确的模拟出海陆风、城市热岛等热力过程,及气流过山引起的绕流等动力过程,并且通过对边界层高度的模拟预测污染扩散的条件等.说明模式系统具有模拟在中尺度的背景场的控制下海陆风环流、过山堆积和绕流及城市热力影响的能力.  相似文献   

20.
The applicability of the one-way nesting technique for numerical simulations of the heterogeneous atmospheric boundary layer using the large-eddy simulation (LES) framework of the Weather Research and Forecasting model is investigated. The focus of this study is on LES of offshore convective boundary layers. Simulations were carried out using two subgrid-scale models (linear and non-linear) with two different closures [diagnostic and prognostic subgrid-scale turbulent kinetic energy (TKE) equations]. We found that the non-linear backscatter and anisotropy model with a prognostic subgrid-scale TKE equation is capable of providing similar results when performing one-way nested LES to a stand-alone domain having the same grid resolution but using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes, while velocity variances are overestimated. A streamwise fetch of 14 km is needed following each domain transition in order for the solution to reach quasi-stationary results and for the velocity spectra to generate proper energy content at high wavelengths, however, a pile-up of energy is observed at the low-wavelength portion of the spectrum on the first nested domain. The inclusion of a second nest with higher resolution allows the solution to reach effective grid spacing well within the Kolmogorov inertial subrange of turbulence and develop an appropriate energy cascade that eliminates most of the pile-up of energy at low wavelengths. Consequently, the overestimation of velocity variances is substantially reduced and a considerably better agreement with respect to the stand-alone domain results is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号