首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The East African Rift System is important to understanding plume-initiatedrifting as manifest in the geochemistry of mafic lavas eruptedalong the rift throughout its evolution. We present new datafrom high-MgO Tertiary lavas from Turkana, northern Kenya, toinvestigate regional melt source components, to identify thedepths and degrees of melting, and to characterize spatiallyand temporally the chemical structure of the underlying mantle.The Turkana area is a region of high lithospheric extensionthat sits between two topographic uplifts thought to be surfaceexpressions of one or more upwelling mantle plumes. Thinningof local crust is believed to be accompanied by widespread removalof the mantle lithosphere, causing the asthenosphere to be inclose contact with the overlying crust. New geochemical dataon basanites, picrites and basalts (MgO >7 wt %) tightlyconstrain the primary melt source regions of Tertiary volcanism.Initial isotopic signatures (143Nd/144Nd = 0·51267–0·51283,87Sr/86Sr = 0·7031–0·7036) and trace elementabundances (Ce/Pb 30, La/Nb = 0·6–0·8 andBa/Nb = 3–10) in these lavas are consistent with derivationfrom sub-lithospheric sources. Basalts and picrites eruptedbetween 23 and 20 Ma have Sr–Nd–Pb–He isotopiccharacteristics indicative of high-µ influence, recordhigh depths and degrees of partial melting, and are associatedwith rift propagation to the north and south. Accordingly, theselavas sample a source region that is geochemically distinctfrom that reflected both in Oligocene Ethiopian flood basaltsand in the modern Afar region. The geochemical data supportnumerical and theoretical models as well as tomographic resultsproviding for a complex thermal structure in the mantle beneathEast Africa and are interpreted to reflect isotopically distinctplume heads beneath Tanzania and Afar that are derived fromthe chemically heterogeneous South African superplume. KEY WORDS: East African Rift System; mantle plumes; HIMU; geochemistry; Afar  相似文献   

2.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

3.
Rates of magmatic processes in a cooling magma chamber wereinvestigated for alkali basalt and trachytic andesite lavaserupted sequentially from Rishiri Volcano, northern Japan, bydating of these lavas using 238U–230Th radioactive disequilibriumand 14C dating methods, in combination with theoretical analyses.We obtained the eruption age of the basaltic lavas to be 29·3± 0·6 ka by 14C dating of charcoals. The eruptionage of the andesitic lavas was estimated to be 20·2 ±3·1 ka, utilizing a whole-rock isochron formed by U–Thfractionation as a result of degassing after lava emplacement.Because these two lavas represent a series of magmas producedby assimilation and fractional crystallization in the same magmachamber, the difference of the ages (i.e. 9 kyr) is a timescaleof magmatic evolution. The thermal and chemical evolution ofthe Rishiri magma chamber was modeled using mass and energybalance constraints, as well as quantitative information obtainedfrom petrological and geochemical observations on the lavas.Using the timescale of 9 kyr, the thickness of the magma chamberis estimated to have been about 1·7 km. The model calculationsshow that, in the early stage of the evolution, the magma cooledat a relatively high rate (>0·1°C/year), and thecooling rate decreased with time. Convective heat flux fromthe main magma body exceeded 2 W/m2 when the magma was basaltic,and the intensity diminished exponentially with magmatic evolution.Volume flux of crustal materials to the magma chamber and rateof convective melt exchange (compositional convection) betweenthe main magma and mush melt also decreased with time, from 0·1 m/year to 10–3 m/year, and from 1 m/yearto 10–2 m/year, respectively, as the magmas evolved frombasaltic to andesitic compositions. Although the mechanism ofthe cooling (i.e. thermal convection and/or compositional convection)of the main magma could not be constrained uniquely by the model,it is suggested that compositional convection was not effectivein cooling the main magma, and the magma chamber is consideredto have been cooled by thermal convection, in addition to heatconduction. KEY WORDS: convection; magma chamber; heat and mass transport; timescale; U-series disequilibria  相似文献   

4.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

5.
Zircon Hf isotopic data from a zoned pluton of the Moonbi supersuite,New England batholith, eastern Australia, are consistent withmagma mixing between two silicic melts, each derived from isotopicallydistinct sources. Although zircons from three zones within theWalcha Road pluton give a U–Pb crystallization age of249 ± 3 Ma, zircon populations from each zone have arange in Hf. Zircons from the mafic hornblende–biotitemonzogranite pluton margin and intermediate zones have Hf +5to +11, whereas those from the more felsic centre of the plutonhave Hf +7 to +16, representing a total variation of 11 Hfunits. The Lu–Hf depleted mantle model ages range from650 to 250 Ma, with the younger zircons present only in thefelsic pluton centre. The variation in Hf indicates the involvementof silicic melts from at least two sources, one a crustal componentwith a Neoproterozoic model age and the other a primitive mantle-derivedcomponent with model ages similar to the U–Pb crystallizationage of the pluton. The zircons reflect the isotopic compositionsof the different proportions of crustal-derived silicic melt,relative to mantle-derived silicic melt, between melt generationand final pluton construction. The Walcha Road pluton is consideredto have formed by incremental assembly of progressively morefelsic melt batches resulting from mixing, replenishment andcrystal–melt separation, with final pluton constructioninvolving mechanical concentration as zones of crystal mush.The zoned pluton and, more broadly, the Moonbi supersuite provideexamples of magma mixing by which the more silicic units havemore juvenile isotopic compositions as a result of increasingproportions of residual melt from basalt fractionation, relativeto crustal partial melt. KEY WORDS: Australia; granite magma mixing; zircon; zoned pluton; Hf isotopes  相似文献   

6.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   

7.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

8.
In north-east Brazil, Archean and Paleoproterozoic cratonicblocks are enclosed within a network of Brasiliano-age (0·7–0·55Ga) metasedimentary foldbelts. The unfoliated Coronel JoãoSá granodiorite pluton, which contains magmatic epidoteand strongly resorbed clinopyroxene, intrudes the SergipanoFoldbelt. Zircons yield a concordant U–Pb crystallizationage of 625 ± 2 Ma; titanite ages are approximately 621Ma. Discordant zircons suggest inheritance from at least twomagma sources of ages <1·8 and >2·2 Ga.Model calculations based on diffusion parameters and Rb–Srisotope data from separated minerals indicate that the plutoncooled at a rate of 36°C/Myr. Whole-rock element compositionsand initial Sr–Nd isotopic compositions that are heterogeneouson all length scales suggest magma mixing. Trace-element concentrationsand Nd isotope data argue against a contribution from a contemporaneousmantle-derived magma. Values of magmatic Nd (at 625 Ma) resemblecontemporary Nd for local supracrustal rocks and basement, compatiblewith anatexis of a crustal source. In north-east Brazil, cratonicblocks could have amalgamated with foldbelts that originatedas: (1) a mosaic of island arcs and arc basins (traditionalallochthonous model), or as (2) extensional continental sedimentarybasins (but not oceanic crust) later involved in collision (autochthonousmodel). The Coronel João Sá isotopic and chemicaldata support an autochthonous origin. KEY WORDS: Brasiliano Orogeny; granodiorite pluton; Rb–Sr isotopes, Sm–Nd isotopes; U–Pb isotopes, magma cooling rate  相似文献   

9.
The origin of large-volume Yellowstone ignimbrites and smaller-volumeintra-caldera lavas requires shallow remelting of enormous volumesof variably 18O-depleted volcanic and sub-volcanic rocks alteredby hydrothermal activity. Zircons provide probes of these processesas they preserve older ages and inherited 18O values. This studypresents a high-resolution, oxygen isotope examination of volcanismat Yellowstone using ion microprobe analysis with an averageprecision of ± 0·2 and a 10 µm spot size.We report 357 analyses of cores and rims of zircons, and isotopeprofiles of 142 single zircons in 11 units that represent majorYellowstone ignimbrites, and post-caldera lavas. Many zirconsfrom these samples were previously dated in the same spots bysensitive high-resolution ion microprobe (SHRIMP), and all zirconswere analyzed for oxygen isotope ratios in bulk as a functionof grain size by laser fluorination. We additionally reportoxygen isotope analyses of quartz crystals in three units. Theresults of this work provide the following new observations.(1) Most zircons from post-caldera low-18O lavas are zoned,with higher 18O values and highly variable U–Pb ages inthe cores that suggest inheritance from pre-caldera rocks exposedon the surface. (2) Many of the higher-18O zircon cores in theselavas have U–Pb zircon crystallization ages that postdatecaldera formation, but pre-date the eruption age by 10–20kyr, and represent inheritance of unexposed post-caldera sub-volcanicunits that have 18O similar to the Lava Creek Tuff. (3) Youngand voluminous 0·25–0·1 Ma intra-calderalavas, which represent the latest volcanic activity at Yellowstone,contain zircons with both high-18O and low-18O cores surroundedby an intermediate-18O rim. This implies inheritance of a varietyof rocks from high-18O pre-caldera and low-18O post-calderaunits, followed by residence in a common intermediate-18O meltprior to eruption. (4) Major ignimbrites of Huckleberry Ridge,and to a lesser extent the Lava Creek and Mesa Falls Tuffs,contain zoned zircons with lower-18O zircon cores, suggestingthat melting and zircon inheritance from the low-18O hydrothermallyaltered carapace was an important process during formation ofthese large magma bodies prior to caldera collapse. (5) The18O zoning in the majority of zircon core–rim interfacesis step-like rather than smoothly inflected, suggesting thatprocesses of solution–reprecipitation were more importantthan intra-crystalline oxygen diffusion. Concave-downward zirconcrystal size distributions support dissolution of the smallercrystals and growth of rims on larger crystals. This study suggeststhat silicic magmatism at Yellowstone proceeded via rapid, shallow-levelremelting of earlier erupted and hydrothermally altered Yellowstonesource rocks and that pulses of basaltic magma provided theheat for melting. Each post-caldera Yellowstone lava representsan independent homogenized magma batch that was generated rapidlyby remelting of source rocks of various ages and 18O values.The commonly held model of a single, large-volume, super-solidus,mushy-state magma chamber that is periodically reactivated andproduces rhyolitic offspring is not supported by our data. Rather,the source rocks for the Yellowstone volcanism were cooled belowthe solidus, hydrothermally altered by heated meteoric watersthat caused low 18O values, and then remelted in distinct pocketsby intrusion of basic magmas. Each packet of new melt inheritedzircons that retained older age and 18O values. This interpretationmay have significance for interpreting seismic data for crustallow-velocity zones in which magma mush and solidified areasexperiencing hydrothermal circulation occur side by side. Newbasalt intrusions into this solidifying batholith are requiredto form the youngest volcanic rocks that erupted as independentrhyolitic magmas. We also suggest that the Lava Creek Tuff magmawas already an uneruptable mush by the time of the first post-calderaeruption after 0·1 Myr of the climactic caldera-formingeruption. KEY WORDS: Yellowstone; oxygen isotopes; geochronology; isotope zoning; zircon; U–Pb dating; caldera; rhyolite; ion microprobe  相似文献   

10.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

11.
Crystallization experiments at 400 MPa, oxidized condition (logfO2= NNO + 1, where NNO is nickel–nickel oxide buffer) andover a range of temperatures (850–950°C) and fluidcomposition (XH2Oin = 0·3–1) have been carriedout to constrain the storage conditions of the sulphur-richmagma of the Huerto Andesite (an anhydrite, pyrrhotite, andS-rich apatite-bearing, post-Fish Canyon Tuff mafic lava). Theresults are used to evaluate the role of fluids released fromthe crystallization of magmas such as the Huerto Andesite onthe remobilization of the largely crystallized dacitic FishCanyon magma body. Experiments were performed using the naturalandesitic bulk composition with and without added sulphur. Thepresence of sulphur slightly affects the phase equilibria bychanging the phase proportions, stability fields of plagioclase,pyroxenes and ilmenite, and also affects the plagioclase composition.Phase equilibria and mineral composition data indicate thatthe magma may have contained 4·5 wt % water in the meltand that the pre-eruptive temperature was 875 ± 25°C.Assuming that the magma was in equilibrium with a fluid phase,the CO2 concentration of the melt is estimated to be in therange 2000–4000 ppm (at 400 MPa). Before eruption, theandesite had an oxidation state very close to, or slightly within,the co-stability field of anhydrite–pyrrhotite at NNO+ 1·1. At these conditions, the sulphur content in themelt is 500 ppm. Assuming open-system degassing resulting fromcontinuing crystallization at depth, most of the CO2 dissolvedin the andesitic melt should be released after the crystallizationof <10 vol. % of the magma, corresponding to a cooling from875 to 825–850°C. Thus, the fluids released owingto crystallization processes should be mainly composed of waterat temperatures below 825°C. KEY WORDS: experimental study; andesite; volatile; Fish Canyon Tuff; Huerto Andesite  相似文献   

12.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   

13.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   

14.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

15.
The focus of this study is a suite of garnet-bearing mantlexenoliths from Oahu, Hawaii. Clinopyroxene, olivine, and garnetconstitute the bulk of the xenoliths, and orthopyroxene is presentin small amounts. Clinopyroxene has exsolved orthopyroxene,spinel, and garnet. Many xenoliths also contain spinel-coredgarnets. Olivine, clinopyroxene, and garnet are in major elementchemical equilibrium with each other; large, discrete orthopyroxenedoes not appear to be in major-element chemical equilibriumwith the other minerals. Multiple compositions of orthopyroxeneoccur in individual xenoliths. The new data do not support theexisting hypothesis that all the xenoliths formed at 1 6–22GPa, and that the spinel-cored garnets formed as a consequenceof almost isobaric subsolidus cooling of a spinel-bearing assemblage.The lack of olivine or pyroxenes in the spinel–garnetreaction zones and the embayed outline of spinel grains insidegarnet suggest that the spinel-cored garnets grew in the presenceof a melt. The origin of these xenoliths is interpreted on thebasis of liquidus phase relations in the tholeiitic and slightlysilica-poor portion of the CaO–MgO–Al2O3–SiO2(CMAS) system at pressures from 30 to 50 GPa. The phase relationssuggest crystallization from slightly silica-poor melts (ortransitional basaltic melts) in the depth range 110–150km beneath Oahu. This depth estimate puts the formation of thesexenoliths in the asthenosphere. On the basis of this study itis proposed that the pyroxenite xenoliths are high-pressurecumulates related to polybaric magma fractionation in the asthenosphere,thus making Oahu the only locality among the oceanic regionswhere such deep magmatic fractional crystallization processeshave been recognized. KEY WORDS: xenolith; asthenosphere; basalt; CMAS; cumulate; oceanic lithosphere; experimental petrology; mantle; geothermobarometry; magma chamber  相似文献   

16.
Batholith-sized bodies of crystal-rich magmatic ‘mush’are widely inferred to represent the hidden sources of manylarge-volume high-silica rhyolite eruptive units. Occasionallythese mush bodies are ejected along with their trapped interstitialliquid, forming the distinctive crystal-rich ignimbrites knownas ‘monotonous intermediates’. These ignimbritesare notable for their combination of high crystal contents (35–55%),dacitic bulk compositions with interstitial high-silica rhyoliticglass, and general lack of compositional zonation. The 5000km3 Fish Canyon Tuff is an archetypal eruption deposit of thistype, and is the largest known silicic eruption on Earth. Ejectafrom the Fish Canyon magmatic system are notable for the limitedcompositional variation that they define on the basis of whole-rockchemistry, whereas 45 vol. % crystals in a matrix of high-silicarhyolite glass together span a large range of mineral-scaleisotopic variability (microns to millimetres). Rb/Sr isotopicanalyses of single crystals (sanidine, plagioclase, biotite,hornblende, apatite, titanite) and sampling by micromillingof selected zones within glass plus sanidine and plagioclasecrystals document widespread isotopic disequilibrium at manyscales. High and variable 87Sr/86Sri values for euhedral biotitegrains cannot be explained by any model involving closed-systemradiogenic ingrowth, and they are difficult to rationalize unlessmuch of this radiogenic Sr has been introduced at a late stagevia assimilation of local Proterozoic crust. Hornblende is theonly phase that approaches isotopic equilibrium with the surroundingmelt, but the melt (glass) was isotopically heterogeneous atthe millimetre scale, and was therefore apparently contaminatedwith radiogenic Sr shortly prior to eruption. The other mineralphases (plagioclase, sanidine, titanite, and apatite) have significantlylower 87Sr/86Sri values than whole-rock values (as much as –0·0005).Such isotopic disequilibrium implies that feldspars, titaniteand apatite are antecrysts that crystallized from less radiogenicmelt compositions at earlier stages of magma evolution, whereashighly radiogenic biotite xenocrysts and the development ofisotopic heterogeneity in matrix melt glass appear to coincidewith the final stage of the evolution of the Fish Canyon magmabody in the upper crust. Integrated petrographic and geochemicalevidence is consistent with pre-eruptive thermal rejuvenationof a near-solidus mineral assemblage from 720 to 760°C (i.e.partial dissolution of feldspars + quartz while hornblende +titanite + biotite were crystallizing). Assimilation and blendingof phenocrysts, antecrysts and xenocrysts reflects chamber-wide,low Reynolds number convection that occurred within the last10 000 years before eruption. KEY WORDS: Fish Canyon Tuff; Rb–Sr isotopes; microsampling; magmatic processes; crystal mush  相似文献   

17.
The Yanshan Fold and Thrust Belt in eastern China has been intrudedby a series of alkalic igneous rocks, ranging in compositionfrom granite and rhyolite to syenite and trachyte. Laser ablationinductively coupled plasma mass spectrometry U–Pb analysesof zircon from three alkaline suites yield Early Cretaceousages of 130–117 Ma. Three groups of rocks have been identifiedbased on their mineralogical, geochemical and Sr–Nd–Hfisotope characteristics. The alkali granites and rhyolites areferroan and have low Al2O3, MgO, CaO, Sr, Ba and Eu concentrationsand high SiO2, total Fe2O3, K2O, Nb, Ga, Ta, Th and heavy rareearth element abundances and Ga/Al ratios. Geochemical dataand Sr-, Nd- and zircon Hf-isotopic compositions [(87Sr/86Sr)i= 0·7050–0·7164, Nd(t) = –8·4to –13·6 and Hf(t) = –5·7 to –16·8]indicate that they were probably generated by shallow dehydrationmelting of biotite- or hornblende-bearing granitoid crustalsource rocks and then mixed with contemporaneous magma froma mantle and/or lower crustal source. Ferroan syenites havedistinct geochemical features from those of the alkaline granitesand rhyolites, suggesting that they were produced by clinopyroxeneand plagioclase fractionation of melt derived from an enrichedmantle source, mixed with lower and upper crustal-derived magmas.The magnesian syenites and trachytes have Sr-, Nd- and zirconHf-isotopic compositions that are distinct from those of theferroan syenites. They were mainly derived from partial meltingof lower crustal materials, mixed with enriched mantle-derivedalkali basaltic magma. The emplacement of an alkali syenite–granite–rhyolitesuite, coeval with the formation of metamorphic core complexesand pull-apart basins in eastern China, indicates they formedin an extensional setting, possibly as a result of lithosphericthinning. KEY WORDS: alkaline rocks; zircon U–Pb dating; petrogenesis; crustal extension; Yanshan Fold and Thrust Belt; North China Craton  相似文献   

18.
Tourmaline in the Martinamor antiform occurs in tourmalinites(rocks with >15–20% tourmaline by volume), clasticmetasedimentary rocks of the Upper Proterozoic Monterrubio formation,quartz veins, pre-Variscan orthogneisses and Variscan graniticrocks. Petrographic observations, back-scattered electron (BSE)images, and microprobe data document a multistaged developmentof tourmaline. Overall, variations in the Mg/(Mg + Fe) ratiosdecrease from tourmalinites (0·36–0·75),through veins (0·38–0·66) to granitic rocks(0·23–0·46), whereas Al increases in thesame order from 5·84–6·65 to 6·22–6·88apfu. The incorporation of Al into tourmaline is consistentwith combinations of xAl(NaR)–1 and AlO(R(OH))–1exchange vectors, where x represents X-site vacancy and R is(Mg + Fe2+ + Mn). Variations in x/(x + Na) ratios are similarin all the types of tourmaline occurrences, from 0·10to 0·53, with low Ca-contents (mostly <0·10apfu). Based on field and textural criteria, two groups of tourmaline-richrocks are distinguished: (1) pre-Variscan tourmalinites (probablyCadomian), affected by both deformation and regional metamorphismduring the Variscan orogeny; (2) tourmalinites related to thesynkinematic granitic complex of Martinamor. Textural and geochemicaldata are consistent with a psammopelitic parentage for the protolithof the tourmalinites. Boron isotope analyses of tourmaline havea total range of 11B values from –15·6 to 6·8;the lowest corresponding to granitic tourmalines (–15·6to –11·7) and the highest to veins (1·9to 6·8). Tourmalines from tourmalinites have intermediate11B values of –8·0 to +2·0. The observedvariations in 11B support an important crustal recycling ofboron in the Martinamor area, in which pre-Variscan tourmaliniteswere remobilized by a combination of mechanical and chemicalprocesses during Variscan deformation, metamorphism and anatexis,leading to the formation of multiple tourmaline-bearing veinsand a new stage of boron metasomatism. KEY WORDS: tourmalinites; metamorphic and granitic rocks; mineral chemistry; whole-rock chemistry; boron isotopes  相似文献   

19.
Economic concentrations of Fe–Ti oxides occur as massive,conformable lenses or layers in the lower part of the Panzhihuaintrusion, Emeishan Large Igneous Province, SW China. Mineralchemistry, textures and QUILF equilibria indicate that oxidesin rocks of the intrusion were subjected to extensive subsolidusre-equilibration and exsolution. The primary oxide, reconstructedfrom compositions of titanomagnetite in the ores and associatedintergrowths, is an aluminous titanomagnetite (Usp40) with 40wt % FeO, 34 wt % Fe2O3, 16·5 wt % TiO2, 5·3 wt% Al2O3, 3·5 wt % MgO and 0·5 wt % MnO. This compositionis similar to the bulk composition of the oxide ore, as inferredfrom whole-rock data. This similarity strongly suggests thatthe ores formed from accumulation of titanomagnetite crystals,not from immiscible oxide melt as proposed in earlier studies.The occurrence of oxide ores in the lower parts of the Panzhihuaintrusion is best explained by settling and sorting of densetitanomagnetite in the ferrogabbroic parental magma. This magmamust have crystallized Fe–Ti oxides relatively early andabundantly, and is likely to have been enriched in Fe and Tibut poor in SiO2. These features are consistent with fractionationof mantle-derived melts under relatively high pressures (10kbar), followed by emplacement of the residual magma at 5 kbar.This study provides definitive field and geochemical evidencethat Fe–Ti oxide ores can form by accumulation in ferrogabbro.We suggest that many other massive Fe–Ti oxide depositsmay have formed in a similar fashion and that high concentrationsof phosphorus or carbon, or periodic fluctuation of fO2 in themagma, are of secondary importance in ore formation. KEY WORDS: ELIP; Fe–Ti oxide ore; layered intrusion; Panzhihua; QUILF  相似文献   

20.
Olivine is the principal mineral of kimberlite magmas, and isthe main contributor to the ultramafic composition of kimberliterocks. Olivine is partly or completely altered in common kimberlites,and thus unavailable for studies of the origin and evolutionof kimberlite magmas. The masking effects of alteration, commonin kimberlites worldwide, are overcome in this study of theexceptionally fresh diamondiferous kimberlites of the Udachnaya-Eastpipe from the Daldyn–Alakit province, Yakutia, northernSiberia. These serpentine-free kimberlites contain large amountsof olivine (50 vol.%) in a chloride–carbonate groundmass.Olivine is represented by two populations (olivine-I and groundmassolivine-II) differing in morphology, colour and grain size,and trapped mineral and melt inclusions. The large fragmentalolivine-I is compositionally variable in terms of major (Fo85–94)and trace element concentrations, including H2O content (10–136ppm). Multiple sources of olivine-I, such as convecting andlithospheric mantle, are suggested. The groundmass olivine-IIis recognized by smaller grain sizes and perfect crystallographicshapes that indicate crystallization during magma ascent andemplacement. However, a simple crystallization history for olivine-IIis complicated by complex zoning in terms of Fo values and traceelement contents. The cores of olivine-II are compositionallysimilar to olivine-I, which suggests a genetic link betweenthese two types of olivine. Olivine-I and olivine-II have oxygenisotope values (+ 5·6 ± 0·1 VSMOW, 1 SD)that are indistinguishable from one another, but higher thanvalues (+ 5·18 ± 0·28) in ‘typical’mantle olivine. These elevated values probably reflect equilibriumwith the Udachnaya carbonate melt at low temperatures and 18O-enrichedmantle source. The volumetrically significant rims of olivine-IIhave constant Fo values (89·0 ± 0·2 mol%),but variable trace element compositions. The uniform Fo compositionsof the rims imply an absence of fractionation of the melt'sFe2+/Mg, which is possible in the carbonatite melt–olivinesystem. The kimberlite melt is argued to have originated inthe mantle as a chloride–carbonate liquid, devoid of ‘ultramafic’or ‘basaltic’ aluminosilicate components, but becameolivine-laden and olivine-saturated by scavenging olivine crystalsfrom the pathway rocks and dissolving them en route to the surface.During emplacement the kimberlite magma changed progressivelytowards an original alkali-rich chloride–carbonate meltby extensively crystallizing groundmass olivine and gravitationalseparation of solids in the pipe. KEY WORDS: kimberlite; olivine; partial melting; carbonatitic melt; oxygen isotopes; H2O  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号