首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
位于巴基斯坦北部西喜马拉雅的科希斯坦地体为夹持于亚洲板块与印度板块之间的倾斜的岛弧型壳体。科希斯坦岛弧北界为主地幔逆总断层(MMT),北界为北部缝合带(或喀啦昆仑主逆冲断层,MKT),可将其划分为几个地质单元。奇拉斯(Chilas)杂岩体为一长约300km、宽50km的巨型基性侵入岩体,与MMT和MKT近平行展布。它被认为是科希斯坦岛弧的岩浆房根区。奇拉斯杂岩体主要由辉长苏长岩和几个超镁铁质岩-镁铁质岩(简称UMA)岩体组成。前侵入后之中。奇拉斯杂岩体岩石普遍发生轻微变形,出现叶理化和韧性剪切带。UMA主要由橄榄石(含或不含单斜辉石)堆积岩(纯橄岩,异剥橄岩)和斜长石-单斜辉石-斜方辉石堆积岩(二辉辉长岩)组成,含有少量单斜辉石-斜方辉石堆积岩(辉石岩)。辉长苏长岩的地球化学特征表明其为岛弧环境下形成的非堆积岩,而UMA的地球化学特征表明其为岛弧环境下的堆积岩。辉长苏长岩和UMA的主元素地球化学特征在AFM图解上可用堆积和非堆积的模式来解释,辉长苏长岩的稀土和微量元素地球化学特征在100MgO/(MgO TFeO)图解上显示岛弧型特点,且UMA表明其堆积特性。  相似文献   

2.
The late-Proterozoic Allard Lake ilmenite deposit is located in the Havre-Saint-Pierre anorthosite complex, part of the allochtonous polycyclic belt of the Grenville Province. Presently the world's largest Fe–Ti oxide deposit, it had a pre-mining amount in excess of 200 Mt at grades over 60 wt.% hemo-ilmenite. The main ore body is a funnel-shaped intrusion, measuring 1.03 × 1.10 km and 100–300 m-thick. Two smaller bodies are separated by faults and anorthosite. The ore is an ilmenite-rich norite (or ilmenitite) made up of hemo-ilmenite (Hem22.6–29.4, 66.2 wt.% on average), andesine plagioclase (An45–50), aluminous spinel and locally orthopyroxene. Whole-rock chemical compositions are controlled by the proportions of ilmenite and plagioclase ± orthopyroxene which supports the cumulate origin of the deposit. Ore-forming processes are further constrained by normal and reverse fractionation trends of Cr concentration in cumulus ilmenite that reveal multiple magma emplacements and alternating periods of fractional crystallization and magma mixing. Mixing of magmas produced hybrids located in the stability field of ilmenite resulted in periodic crystallization of ilmenite alone. The unsystematic differentiation trends in the Allard Lake deposit, arising from a succession of magma pulses, hybridisation, and the fractionation of hemo-ilmenite alone or together with plagioclase suggest that the deposit formed within a magma conduit. This dynamic emplacement mechanism associated with continuous gravity driven accumulation of Fe–Ti oxides and possibly plagioclase buoyancy in a fractionating ferrobasalt explains the huge concentration of hemo-ilmenite. The occurrence of sapphirine associated with aluminous spinel and high-alumina orthopyroxene (7.6–9.1 wt.% Al2O3) lacking exsolved plagioclase supports the involvement of a metamorphic overprint during the synchronous Ottawan orogeny, which is also responsible for strong textural equilibration and external granule of exsolved aluminous spinel due to slow cooling.  相似文献   

3.
Chromite deposits associated with layered anorthosite complexes in the Archaean high-grade terranes are rare in the world. The late Archaean Sittampundi Layered Magmatic Complex, Tamil Nadu, India is one of the few such deposits in the world where layers of Fe-Al rich chromites are associated with extremely calcic (An>95) anorthosite. ‘Frozen in’ magmatic mineralogy of the chromitite and the enclosing anorthosite suggest successive crystallization of chromite + clinopyroxene and chromite + clinopyroxene + anorthite from a hydrous Al-rich basaltic melt that was emplaced in a suprasubduction zone setting. Intense deformation and upper amphibolite facies metamorphism at ∼2.45 Ga converted the magmatic assemblages to hitherto unreported hornblende + gedrite + Mg-Al rich spinel ± chlorite bearing assemblages. During metamorphic reconstitution, chromite was pseudomorphically replaced by green spinel in the domains rich in secondary amphiboles. Mass-balance calculation and algebraic analyses of the observed mineralogy suggest that a number of chemical species including chromium became mobile during the formation of spinel pseudomorph in response to infiltration driven metamorphism. Aluminium became mobile in the length scale of chromite grain but remained immobile in the length scale of a thin section.  相似文献   

4.
The Sittampundi Anorthosite Complex (SAC) in southern India is one of the well exposed Archean layered anorthosite-gabbro-ultramafic rock associations. Here we present high precision geochemical data for the various units of SAC, coupled with zircon U-Pb geochronology and Hf isotopic data for the anorthosite. The zircon ages define two populations, the older yield a concordia age of 2541 ± 13 Ma, which is interpreted as the best estimate of the magmatic crystallization age for the Sittampundi anorthosite. A high-grade metamorphic event at 2461 ± 15 Ma is suggested by the upper intercept age of the younger zircon population. A Neoproterozoic event at 715 ± 180 Ma resulted in Pb loss from some of the metamorphic zircons. The magmatic age of the anorthosite correlates well with the timing of crystallization of the arc-related ~ 2530 Ma magmatic charnockites in the adjacent Salem Block, while the metamorphic age is synchronous with the regional metamorphic event. The geochemical data suggest that the rocks were derived from a depleted mantle source. Sub-arc mantle metasomatism of slab derived fluids and subsequent partial melting produced hydrous, aluminous basalt magma. The magma fractionated at depth to produce a variety of high-alumina basalt compositions, from which the anorthositic complex with its chromite-rich and amphibole-rich layers formed as cumulates within the magma chamber of a supra-subduction zone arc. The coherent initial176Hf/177Hf ratios and positive εHf values (1.7 – 4.5) of the magmatic zircons in the anorthosite are consistent with derivation of a rather homogeneous juvenile parent magma from a depleted mantle source. Our study further confirms that the southern part of the Dharwar Craton was an active convergent margin during the Neoarchean with the generation and emplacement of suprasubduction zone arc magmas which played a significant role in continental growth.  相似文献   

5.
The combination of age determination and geochemical tracers allows understanding the source evolution during magmatism. We studied the Sapat Complex, in the exhumed Cretaceous Kohistan Paleo-Island Arc, to reconstruct the formation of the juvenile lower arc crust and the evolution of the mantle source during arc magmatism. High precision ID-TIMS U/Pb dating on zircon, shows that a protracted period of magmatic accretion formed the Sapat Complex between 105 and 99 Ma. Since continued melt percolation processes that formed the lower crust obscured the original bulk rock Nd–Pb–Sr isotopic composition, we rely on the Hf isotopic composition of zircons of different ages to unravel the source evolution. Nd and Pb bulk isotopic compositions coupled with Hf isotopic composition on zircons allow reconstructing a geodynamical scenario for the Sapat Complex, and the Cretaceous history of the Arc. We suggest that trenchward migration of the hot mantle source at 105 Ma explains the small heterogeneous εHf signal between + 14 and + 16. This heterogeneity vanished within ca. 2 million years, and the εHf of the source evolved from + 16 to + 14 at 99 Ma. Integrated to the Kohistan Cretaceous history, which has a baseline of εHf  14, these data pinpoint two geodynamical events, with slab retreat and the formation of the Sapat Complex followed by splitting of the Kohistan island arc at 85 Ma.  相似文献   

6.
The Jijal and Chilas Complexes have been interpreted previously as the lower levels of the layered Kohistan Island Arc, in Pakistan. We provide petro-structural evidence for melt-consuming reactions between mantle rocks and infiltrated, volatile-rich magmas in both complexes. Precipitated minerals in Jijal and Chilas suggest that melt-rock reaction occurred at higher pressure in Jijal than in Chilas. The early appearance of orthopyroxene in Chilas and the spatial relationship of the ultramafic rocks with quartz-bearing norites indicate that the reactant melt was more silicic. We argue that the Jijal Complex includes the infra-arc crust/mantle boundary and that ultramafic associations of the Chilas Complex are apices of possibly younger, intra-arc mantle diapirs.  相似文献   

7.
We present major and trace element analyses and U–Pb zircon intrusion ages from I-type granitoids sampled along a crustal transect in the vicinity of the Chilas gabbronorite of the Kohistan paleo-arc. The aim is to investigate the roles of fractional crystallization of mantle-derived melts and partial melting of lower crustal amphibolites to produce the magmatic upper crust of an island arc. The analyzed samples span a wide calc-alkaline compositional range (diorite–tonalite–granodiorite–granite) and have typical subduction-related trace element signatures. Their intrusion ages (75.1 ± 4.5–42.1 ± 4.4 Ma) are younger than the Chilas Complex (~85 Ma). The new results indicate, in conjunction with literature data, that granitoid formation in the Kohistan arc was a continuous rather than punctuated process. Field observations and the presence of inherited zircons indicate the importance of assimilation processes. Field relations, petrographic observations and major and trace element compositions of the granitoid indicate the importance of amphibole fractionation for their origin. It is concluded that granitoids in the Kohistan arc are derivative products of mantle derived melts that evolved through amphibole-dominated fractionation and intra crustal assimilation.  相似文献   

8.
The Bad Vermilion Lake Anorthosite Complex (henceforth, the BVLA Complex) in western Ontario is one of the well-exposed, anorthosite-bearing, Archean layered intrusions in the Superior Province, Canada. This study presents new whole-rock major and trace element data for the various units of the Complex, oxygen isotope data for the anorthosite, and major and trace element data for the spatially associated granitic rocks intruding the BVLA Complex to constrain their petrogenetic and geodynamic origin. Zircons from granitic rocks have yielded a 207Pb/206Pb age of 2716 ± 18 Ma, constraining the minimum intrusion age of the Complex.Despite deformation and greenschist facies metamorphism, primary igneous textures are locally well preserved in the BVLA Complex. Its whole-rock major and trace elemental compositions and the oxygen isotopic systematics appear not to have been substantially modified by deformation and metamorphism. Mantle-like oxygen isotope signatures and major and trace element compositions are inconsistent with significant crustal contamination of the BVLA Complex during its emplacement. The existence of primary calcic igneous plagioclase, coherent negative Nb anomalies (Nb/Nb* = 0.08–0.88), and geochemical similarities between gabbros from the BVLA Complex and gabbros from Cenozoic arcs collectively suggest an intra-oceanic subduction zone geodynamic setting for the Complex. Near-flat REE patterns in the various units of the BVLA Complex suggest that they were derived from melting of a shallow source beneath a subarc mantle wedge. Trends in immobile major (e.g., MgO) and trace (e.g., Zr) element data indicate that the mineralogical composition of the Complex can be explained by fractional crystallization and accumulation of olivine, orthopyroxene, clinopyroxene, plagioclase and possibly amphibole.Compositionally, the bordering granitic rocks are A2-type and strongly enriched in Th and REE (> 100 times chondrite) and depleted of Ba, Sr, Eu and Ti. We suggest that they formed in a post-collisional, extensional, tectonic regime following emplacement of the BVLA Complex in an oceanic arc.  相似文献   

9.
The Northern Ultramafic Centre (NUC) of the Lac des Iles Complex, Northwest Ontario hosts several platinum group element (PGE) occurrences, including the Sutcliffe Zone, which consists of four subparallel, stratiform PGE-enriched intervals exposed within the cyclically layered eastern flank of the NUC. Field relationships, mineral paragenesis and lithogeochemistry allowed for the identification of 14 cyclic cumulate sequences of two distinct types – Cyclic unit type A (CUA) and Cyclic unit type B (CUB). CUA-type and CUB-type units are interpreted to have formed from a Si-enriched and Si-poor parent magmas, respectively. PGE-enriched intervals occur in four of the CUA-type cyclic units (CUA-5, -6, -8 and -11). PGE enriched intervals are commonly associated with websterite, olivine websterite and gabbronorite containing primary disseminated sulfide (0.2–2 vol%) which are dominated by pyrrhotite, chalcopyrite, and pentlandite with minor cubanite, and troilite. In hydrothermally altered rocks enriched in PGE, primary sulfides are locally partially replaced by secondary chalcopyrite, sphalerite, heazlewoodite, and chalcocite. Palladium occurs either in solid solution with primary pentlandite or is associated with platinum group minerals (PGM) such as Pd-plumbide, Pd-telluride, and Pt-bismuthotelluride. PGMs commonly occur within primary sulfides, at contacts between primary sulfide–silicate minerals, or in association with secondary serpentine and actinolite. Gold and silver typically occur as electrum that exhibits similar textural characteristics and mineralogical associations as the PGMs.Two different chemostratigraphic patterns of PGE, Cu and S enrichment can be recognized among the mineralized CUA cycles: The first (top-loaded) occurs near the top of CUA cycles (CUA-6, -8 and -11) in websterite and/or gabbronorite, just below the levels at which CUB magmas were emplaced. The second (middle-loaded), occurs midway through the lower cycle (CUA-5) in the olivine websterite, which is overlain by CUA-6. Within the four mineralized intervals, PGE tenors average 643 ppm Pd + Pt (in 100% sulfide), Pd/Pt and Pd/Ir ratios range from 0.9 to 3.5 and 35 to 537, respectively, and S/Se ratios range between 500 and 6000. The highest PGE tenors (4377 ppm Pd + Pt) are found in the lowermost interval in serpentinized olivine websterite and have an average Pd/Pt ratio of 3.5 and a S/Se ratio of approximately 2000.It is proposed that orthomagmatic processes of fractional crystallization and dynamic magma recharge were the dominant mineralization processes triggering sulfide-saturation and PGE concentration at the Sutcliffe Zone. Textural relationships between PGM, sulfide minerals, and primary and secondary hydrous silicates suggest that late magmatic to postcumulus hydrothermal fluid infiltration occurred locally during and after sulfide mineralization of the PGE-enriched intervals. However, these fluids had a minimal effect on the distribution of PGE in the Sutcliffe Zone. The Sutcliffe Zone shares many similarities with classic stratiform PGE deposits in terms of Pd/Pt ratio, high PGE tenors, low abundance of sulfide, and PGM assemblages. However, it is distinguished from most stratiform PGE deposits by its tectonic environment and lithostratigraphic position and by the intimate spatial association of the two parental magmas that are interpreted to have been responsible for the observed chemostratigraphy and PGE enrichment.  相似文献   

10.
The main effect of magma–carbonate interaction on magma differentiation is the formation of a silica-undersaturated, alkali-rich residual melt. Such a desilication process was explained as the progressive dissolution of CaCO3 in melt by consumption of SiO2 and MgO to form diopside sensu stricto. Magma chambers emplaced in carbonate substrata, however, are generally associated with magmatic skarns containing clinopyroxene with a high Ca-Tschermak activity in their paragenesis. Data are presented from magma–carbonate interaction experiments, demonstrating that carbonate assimilation is a complex process involving more components than so far assumed. Experimental results show that, during carbonate assimilation, a diopside–hedenbergite–Ca-Tschermak clinopyroxene solid solution is formed and that Ca-Tschermak/diopside and hedenbergite/diopside ratios increase as a function of the progressive carbonate assimilation. Accordingly, carbonate assimilation reaction should be written as follows, taking into account all the involved magmatic components:CaCO3solid + SiO2melt + MgOmelt + FeOmelt + Al2O3melt  (Di–Hd–CaTs)sssolid + CO2fluidThe texture of experimental products demonstrates that carbonate assimilation produces three-phases (solid, melt, and fluid) whose main products are: i) diopside–hedenbergite–Ca-Tschermak clinopyroxene solid solution; ii) silica-undersaturated CaO-rich melt; and iii) C–O–H fluid phase. The silica undersaturation of the melt and, more importantly, the occurrence of a CO2-rich fluid phase, must be taken into account as they significantly affect partition coefficients and the redox state of carbonated systems, respectively.  相似文献   

11.
Pegmatitic and other felsic rock pockets and dike-like intrusions are abundant in the South Kawishiwi Intrusion of the Duluth Complex, including the basal, Cu–Ni–PGE mineralized units. These occurrences are found as pockets, pods or as veins and contain abundant accessory apatite and quartz. Quartz hosts primary fluid inclusions as well as silicate melt inclusions. Combined microthermometry and Raman spectroscopy helped to determine the bulk composition of primary fluid inclusions that are CO2-rich (95 mol%) and contain small amounts of H2O (4.5 mol%), CH4 (0.4 mol%) and trace N2, respectively. This combined technique also made it possible to measure total homogenization temperatures of the inclusions (Thtot = ~ 225 ± 10 °C), otherwise not detectable during microthermometry. Silicate melt inclusions have been quenched to produce homogeneous glasses corresponding to the original melt. Composition of the entrapped melt is granitoid, peraluminous and is very poor in mafic components. We interpret the melt as a product of partial melting of the footwall rocks due to the contact effect of the South Kawishiwi Intrusion. The presence of CO2 in the vapor bubbles of the quenched melt inclusions and petrographic evidence suggest that the fluid and melt inclusion assemblages are coeval. The composition of the fluid and melt phase implies that the fluid originates from the mafic magma of the South Kawishiwi Intrusion and the fluid and melt phases coexisted as a heterogeneous melt–fluid system until entrapment of the inclusions.Coexistence of primary fluid and melt inclusions makes it possible to calculate a minimum entrapment pressure (~ 1.7 kbar) and thus estimate formation depth (~ 5.8 km) for the inclusions. Chlorine is suggested to behave compatibly in the silicate melt phase in the fluid–melt system represented by the inclusions, indicated by the high (up to 0.3%) Cl-concentrations of the silicate melt and CO2-rich nature of the fluid.Apatite halogen-contents provide further details on the behavior of Cl. Apatite in pegmatitic pockets often has elevated Cl-concentrations compared to troctolitic rocks, suggesting enrichment of Cl with progressive crystallization. Systematic trends of Cl-loss at some differentiated melt pockets suggest that in some places Cl exsolved into a fluid phase and migrated away from its source. The segregation of Cl from the melt is probably inhibited by the presence of CO2-rich fluids until the last stages of crystallization, increasing the potential for the development of late-stage saline brines.Platinum-group minerals are often present in microcracks in silicate minerals, in late-stage differentiated sulfide veinlets and in association with chlorapatite, indicating the potential role of Cl-bearing fluids in the final distribution of PGEs.  相似文献   

12.
Abstract

The east central part of the Kohistan magmatic arc is made up principally of the Jaglot Group. From bottom to top it consists of I) paragneisses and schists intercalated with amphibolites and calc-silicates (Gilgit Formation), II) Gashu-Confluence Volcanics (GCV) and III) the Thelichi Formation comprising a volcanic base (Majne volcanics) and turbidites, marble, volcanoclastic sediments and lava flows. Metamorphic grade varies up to the sillimanite zone. The GCV are correlated with the Chalt volcanics and the Thelichi Formation with the Yasin Group. Other lithologies include the Chilas Complex, the Kohistan Batholith and part of the Kamila Amphibolite. Metavolcanics show a broad range in chemical composition. Geochemical parameters used to specify the tecto-nomagmatic regime suggest affinities of both island arc and MORB-like back-arc basin basalts. Kohistan can be divided into three tectonic zones, I) the southern (Kamila) zone comprises amphibolitized basalts, and mafic and ultramafic rocks, II) the central Chilas Complex, and III) the northern (Gilgit) zone i.e., the Jaglot Group. Previous tectonic models considered the southern two zones as the crust of a Cretaceous island arc. This investigation concludes that only the southern zone represents a true island arc. The Jaglot Group derives from back-arc basin assemblages and the Chilas Complex is a magmatic diapir emplaced in the back-arc basin.  相似文献   

13.
The Hercynian Köse composite pluton (KCP) is located in the Eastern Pontides, Turkey, and consists of two units of high-K calc-alkaline, primarily peraluminous granites: (i) the internal body, and (ii) the external body. The internal body, which was emplaced at 322–318 Ma (40Ar/39Ar ages on biotite and hornblende, respectively), displays a wide compositional range (49–71 wt.% SiO2) and contains several lithologies: hybrid equigranular rocks, microgranular magmatic enclaves, mafic dikes, porphyry dikes and mylonites. The external body, which was emplaced at 306.7 Ma (40Ar/39Ar age on K-feldspar), consists exclusively of monzogranite (> 71 wt.% SiO2). Field relationships, mineralogy, major- and trace element geochemistry, and initial Sr–Nd isotope values (ISr = 0.70821 to 0.71002, eNd(t) = ?6.6 to ?8.0) show that the internal body was differentiated and evolved by crystal fractionation and magma mixing processes. The end-members of the mixing process were a mafic rock and a felsic rock. Mafic magma was derived from a relatively deep-seated (25–30 km) crustal storage reservoir, not directly from the mantle, and underwent significant differentiation by fractional crystallization and crustal contamination before mixing. In addition, these magma storages probably supplied the additional heat necessary to initiate crustal melting. Some of the additional heat may have also been released by the radiogenic decay of heat producing elements. Eventually, the existing felsic magma from the melting of K-bearing meta-greywackes was raised to its emplacement level at a depth of ~ 10–16 km. After partial crystallization, it was sporadically intruded by modified mafic magma from the deeper crustal reservoir to generate hybrid rocks. The hybrid rocks were then elevated to a shallower depth by normal faults during the collapse of the orogen and erosion. Mylonites that were later overprinted by pseudotachylites are typically constrained to the internal body and are regarded as markers of this event. The external body is characterized by a significantly less radiogenic and limited range of Sr–Nd isotope values (ISr = 0.70639 to 0. 70792, eNd(t) = ?4.4 to ?6.5) than those of the internal body and a lack of rocks documenting the open system differentiation processes. Fractional crystallization is the exclusive process responsible for the elemental range within the body. The rocks also contain less biotite relative to those of the internal body. All these involve less K-bearing mid-crustal rocks (orthogneisses) in their source, which was probably located at depths near the lower crust. The absence of purely lower crustal-derived melts can be explained by the removal of this type of material during the formation of the parental melt. This melt later ascended to its emplacement level at a depth of around ~ 5–10 km and cut the hybrid rocks of the internal body and regional metamorphic rocks that had been raised previously due to ongoing erosion. The melt that injected into the cracks of the internal body crystallized into porphyries because there was not enough time for the entire crystallization of magma. The data presented here indicate that late Early Carboniferous and Late Carboniferous magmatism occurred in a collisional setting. Slab detachment and subsequent delamination seem to be the most plausible mechanisms for the generation of the Hercynian high-K calc-alkaline magmatism in the Eastern Pontides, Turkey.  相似文献   

14.
The Bellevue drillcore intersects ~3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of ~40 to ~170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30–40% pyroxene). We examined the textures and mineral compositions of a ~40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density increase is produced by the downward infiltration of noritic magma into a previously emplaced plagioclase-rich crystal mush. Fresh noritic magma soaked down into the crystallizing anorthositic mush, partially dissolving plagioclase laths and assimilating Fe-enriched pore melt. The presence of multiple cycles showing upward increases in density in the Bellevue drillcore suggests that downward magma infiltration occurred episodically during crystallization of the Main Zone.  相似文献   

15.
The Damiao type iron deposit is hosted in a typical Proterozoic anorthosite complex in the northern North China Craton. The types of ores in Damiao mainly comprise massive Fe ores, massive Fe–P ores, and disseminated Fe and Fe–P ores. The disseminated Fe and Fe–P ores formed by fractional crystallization are generally hosted in oxide-apatite gabbronorite and account for 70% of the proven reserve of the Damiao type iron ore. The massive Fe and Fe–P ores account for 30% of the proven reserve of the Damiao type deposit iron ore and generally occur as irregular dykes or veins filling vertical fractures of the previously consolidated anorthosite, showing typical features of hydrothermal mineralization. The contact between the massive orebodies and wall rocks is sharp and straight. The anorthosite comprises white and dark varieties, with the former resulted by the alteration of the latter that occurs as relicts. Petrographic observation and electron microprobe analyses show abundant Fe–Ti oxide inclusions in plagioclase which impart the dark color to the rock. The similar spider diagram patterns between fresh and altered plagioclase and between dark- and white-colored anorthosite imply a genetic relationship between the dark and white types. During the alteration of anorthosite, CaO and MgO were slightly decreased, the SiO2, Al2O3 and Na2O were significantly increased, and the TFe2O3 and TiO2 were significantly decreased. The TFe2O3 and TiO2 in the dark-colored anorthosite have a range of 4.86–12.18 wt.% and 0.37–1.65 wt.%, respectively. However, The TFe2O3 and TiO2 in the white-colored anorthosite have a range of 1.67–3.1 wt.% and 0.14–0.31 wt.%, respectively. These features suggest that the alteration of the anorthosite led the Fe element by leaching from the dark-colored anorthosite at highly oxidized condition, and then precipitated within the fractures of the anorthosite, thus forming the massive Fe and Fe–P orebodies. Because the estimated amount of transported Fe is much more abundant than the proven ore reserve, we infer that there should be huge potential for prospecting Damiao type iron ores.  相似文献   

16.
The Bajgan Complex, one of the basement constituents of the arc massif in Iranian Makran forms a rugged, deeply incised terrain. The complex consists of pelitic schists with minor psammitic and basic schists, calc silicate rocks, amphibolites, marbles, metavolcanosediments, mafic and felsic intrusives as well as ultramafic rocks. Metapelitic rocks show an amphibolite facies regional metamorphism and contain garnet, biotite, white mica, quartz, albite ± rutile ± apatite. Thermobarometry of garnet schist yields pressure of more than 9 kbar and temperatures between 560 and 675 °C. The geothermal gradient obtained for the peak of regional metamorphism is 19 °C/km, corresponding to a depth of ca. 31 km. Replacement of garnet by chlorite and epidote suggest greenschist facies metamorphism due to a decrease in temperature and pressure through exhumation and retrograde metamorphism (370–450 °C and 3–6 kbar). The metapelitic rocks followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal decline following tectonic thickening. The formation of medium-pressure metamorphic rocks is related to presence of active subduction of the Neotethys Oceanic lithosphere beneath Eurasia in the Makran.  相似文献   

17.
The crystalline basement of the Sierra de San Luis, which belongs to the Eastern Sierras Pampeanas in central Argentina, consists of three main units: (1) Conlara, (2) Pringles, and (3) Nogolí metamorphic complexes. In the Pringles Metamorphic Complex, mafic–ultramafic bodies occur as discontinuous lenses along a narrow central belt concordant with the general NNE–SSW structural trend. A metamorphic gradient from granulite to greenschist facies is apparent on both sides of the mafic–ultramafic bodies. This work focuses on the characteristics of the mylonitization overprinted on the mafic–ultramafic intrusives in the Pringles Metamorphic Complex and their gneissic–migmatitic surroundings, both previously metamorphosed within the granulite facies. Petrogenetic grid and geothermobarometry applied to the paragenesis equilibrated during the mylonitic event, together with mineral deformation mechanisms, indicate that mafic and adjacent basement mylonites developed under upper amphibolite transitional to granulite facies metamorphic conditions at intermediate pressures (668–764 °C, 6.3–6.9 kbar, 0.3 < XCO2 < 0.7). However, the following mylonitic assemblages can be distinguished from the external limits of the Pringles Metamorphic Complex to its center: lower amphibolite facies  middle amphibolite facies  upper amphibolite transitional to granulite facies. Geothermobarometry applied to mylonitic assemblages indicate a temperature gradient from 555 °C to 764 °C and pressures of 6–7 kbar for the mylonitic event. This event is considered to have developed on a preexisting temperature gradient attributed to the intrusion of mafic–ultramafic bodies. The concentration of sulfides in mylonitic bands and textural relationships provide evidence of remobilization of primary magmatic sulfides of the mafic–ultramafic rocks (+PGM) during the mylonitic event. A lower-temperature final overprint produced brittle fracturing and localized retrogression on mafic–ultramafic minerals and ores by means of a water-rich fluid phase, which gave rise to a serpentine + magnetite ± actinolite association. Concordantly in the adjacent country rocks, fluids channeled along preexisting mylonitic foliation planes produced local obliteration of the mylonitic texture by a randomly oriented replacement of the mylonite mineralogy by a chlorite + sericite/muscovite + magnetite assemblage. Observed mineral reactions combined with structural data and geothermobarometry suggest a succession of tectonometamorphic events for the evolution of the Pringles Metamorphic Complex of Sierra de San Luis, developed in association with a counterclockwise PTd path. The most likely geological setting for this type of evolution is a backarc basin, associated with east-directed Famatinian subduction initiated in Mid-Cambrian times and closed during the collision of the allochthonous Precordillera terrane in Mid-Ordovician times.  相似文献   

18.
The origin of anorthosite and associated igneous gabbronorite and ferrodiorite was investigated through detailed study of a typical massif-type anorthosite complex from Gruber, Central Dronning Maud Land, East Antarctica. Field observations showed that the Gruber Complex is made up of gabbronorite-anorthosite pluton which was intruded by ferrodiorite dykes. Systematic samples collected from the Gruber Complex revealed significant geochemical variations within the region. Four rock types have been identified, based on modal proportions of mineral phases and their geochemistry data. Clinopyroxene-gabbronorite and plagioclase-gabbronorite are the two types of gabbronorite with the dominance of clinopyroxene and plagioclase, respectively. Anorthosite is represented by rocks having predominance of plagioclase with minor clinopyroxene. Ferrodiorite is characterized by modal abundance of orthopyroxene and Fe-Ti oxide. Major and trace element systematics showed that all the four rock types are co-magmatic and are related through fractional crystallization. Based on this study, it is reported that clinopyroxene was the first phase to crystallize followed by plagioclase and then Fe-Ti oxides. Furthermore, trace element composition of the parental melt was calculated using LA-ICPMS analysis of the most primitive, pure clinopyroxene found in the clinopyroxene gabbronorite. Our analyses suggested that the parental melt was similar to that of continental arc basalt and showed signatures of subduction-related metasomatism. Based on mineral chemical and geochemical data, it is interpreted that the parent melt went through changing sequence of crystallization which led to the formation of massive anorthosite.  相似文献   

19.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

20.
Ti-in-zircon thermometry with SHRIMP II multi-collector has been applied to two well-documented Archean igneous and metamorphic samples from southern West Greenland. Zircons from 2.71 Ga partial melt segregation G03/38 formed in a small (< 1 m3), closed system within a mafic rock under high pressure granulite facies conditions. Results of 14 Ti analyses present a mean apparent zircon crystallization temperature of 679 ± 11 °C, underestimating independent garnet-clinopyroxene thermometry by 20–50 °C but consistent with reduced aTiO2 in this system. 36 spot analysis on 15 zircons from 3.81 Ga meta-tonalite G97/18, with an estimated magmatic temperature > 1000 °C, yield a low-temperature focused normal distribution with a mean of 683 ± 32 °C, further demonstrated by high resolution Ti mapping of two individual grains. This distribution is interpreted to represent the temperature of the residual magma at zircon saturation, late in the crystallization history of the tonalite. Hypothetically, Ti-in-zircon thermometry on Eoarchaean detrital zircons sourced from such a high temperature tonalite would present a low-temperature biased image of the host magma, which could be misconstrued as being a minimum melt granite. Multiple analyses from individual zircons can yield complex Ti distributions and associated apparent temperature patterns, reflecting cooling history and local chemical environments in large magma chambers. In addition to inclusions and crystal imperfections, which can yield apparent high temperature anomalies, zircon surfaces can also record extreme (> 1000 °C) apparent Ti temperatures. In our studies these were traced to 49Ti (or a molecular isobaric interference) contamination derived from the double sided adhesive tape used in sample preparation, and should not be assigned geological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号