首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between molecular clouds, star clusters, and the stellar component of the galactic disk is investigated. According to Elmegreen (1985) bound stellar systems, e.g., open star clusters, can be formed from molecular cloud of mass 104 M . A close encounter with a giant molecular cloud or massive black hole disrupts such stellar systems and forms superclusters. This explains why some open star clusters are so mass-deficient. Unbound stellar systems, e.g., expanding OB associations, are formed from molecular clouds of mass 105 M . When disruptive O-type stars appear the star formation is halted and the cloud is destroyed. An example of the relict of GMC disruption in the solar vicinity is Gould's belt. The velocity dispersion-versus-age relation is also investigated and explained as a consequence of gravitational scattering of stars on GMC, or massive black holes, or as due to recurrent transient spirals.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   

2.
We study relation between stellar mass and halo mass for high-mass halos using a sample of galaxy clusters with accurate measurements of stellar masses from optical and ifrared data and total masses from X-ray observations. We find that stellar mass of the brightest cluster galaxies (BCGs) scales as M*,BCG ∝ M 500 αBCG with the best fit slope of αBCG ≈ 0.4 ± 0.1. We measure scatter of M*,BCG at a fixed M500 of ≈0.2 dex. We show that stellar mass-halo mass relations from abundance matching or halo modelling reported in recent studies underestimate masses of BCGs by a factor of ~2?4. We argue that this is because these studies used stellar mass functions (SMF) based on photometry that severely underestimates the outer surface brightness profiles of massive galaxies. We show that M*?M relation derived using abundance matching with the recent SMF calibration by Bernardi et al. (2013) based on improved photometry is in a much better agreement with the relation we derive via direct calibration for observed clusters. The total stellar mass of galaxies correlates with total mass M500 with the slope of ≈0.6 ± 0.1 and scatter of 0.1 dex. This indicates that efficiency with which baryons are converted into stars decreases with increasing cluster mass. The low scatter is due to large contribution of satellite galaxies: the stellar mass in satellite galaxies correlates with M500 with scatter of ≈0.1 dex and best fit slope of αsat ≈ 0.8 ± 0.1. We show that for a fixed choice of the initial mass function (IMF) total stellar fraction in clusters is only a factor of 3?5 lower than the peak stellar fraction reached in M ≈ 1012M halos. The difference is only a factor of ~1.5?3 if the IMF becomes progressively more bottom heavy with increasing mass in early type galaxies, as indicated by recent observational analyses. This means that the overall efficiency of star formation in massive halos is only moderately suppressed compared to L* galaxies and is considerably less suppressed than previously thought. The larger normalization and slope of the M*?M relation derived in this study shows that feedback and associated suppression of star formation in massive halos should be weaker than assumed in most of the current semi-analytic models and simulations.  相似文献   

3.
The bright stellar content for fifteen binary star clusters and their adjoining fields in the Large Magellanic Cloud (LMC) were studied here. Film copies of plates taken with the 1.2 U.K. Schmidt telescope were used for deriving the spectral types of the stars in the studied regions. All classified stars are brighter thanV=17.5 mag and situated in large areas around each pair and in a neighbouring field. Seven of the pairs, the brightest and most populous are young clusters (located mainly at the north part of the parent galaxy). The derived distributions of spectral types of their stars give strong evidence that each pair consists of similar stellar content with ages 0.6–8×107 yr.Eight more binary star clusters were studied as well, selected among the rest of the binaries in the LMC. It is found that their stars were faint for our limit of detection so the poor statistics did not allow a comparison among the two cluster members of each pair. However the bright limit of their stars implies ages >6×108 yr. Considering that these objects were randomly selected it is unlikely that all are projected pairs. So it seems that binarity in star clusters is a phenomenon (favourable in the LMC) which did not happen only once in the life of this galaxy.  相似文献   

4.
A study of circumnuclear star-forming regions (CNSFRs) in several early-type spirals has been carried out in order to investigate their main properties: stellar and gas kinematics, dynamical masses, ionising stellar masses, chemical abundances and other properties of the ionised gas. Both high resolution (R~20,000) and moderate resolution (R~5000) have been used. In some cases, these regions (about 100–150 pc in size) are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ5007 Å lines. The twice ionised oxygen, on the other hand, shows velocity dispersions comparable to those of stars. We have applied the virial theorem to estimate dynamical masses of the clusters, assuming that the systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the full CNSFRs. We obtain oxygen abundances which are comparable to those found in high-metallicity disc Hii regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC3504, 12+log(O/H)=8.85, about 1.5 times solar. The derived N/O ratios are, on average, larger than those found in high-metallicity disc Hii regions, and they do not seem to follow the trend of N/O vs. O/H which marks the secondary behaviour of nitrogen. On the other hand, the S/O ratios span a very narrow range—between 0.6 and 0.8 times solar. Compared to high-metallicity disc Hii regions, CNSFRs show values of the O23 and the N2 parameters whose distributions are shifted to lower and higher values, respectively. Hence, even though their derived oxygen and sulphur abundances are similar, higher values would in principle be obtained for the CNSFRs if pure empirical methods were used to estimate abundances. CNSFRs also exhibit lower ionisation parameters than their disc counterparts, as derived from [Sii]/[Siii]. Their ionisation structure also seems to be different, with CNSFRs showing radiation-field properties more similar to Hii galaxies than to disc high-metallicity Hii regions.  相似文献   

5.
6.
Certain characteristics of quasars observed in the regions of three rich clusters of galaxies are investigated. It is shown that the luminosity functions constructed for samples of quasars from the regions of the Virgo and Fornax clusters are similar to each other and show a very sharp maximum at a stellar magnitude of 18m.0-18m.3. The maximum of the luminosity function for quasars from the region of the Coma cluster (A 1656) is shifted toward fainter magnitudes and lies at 21m. This effect is explained by the affiliation of the majority of the quasars to the respective clusters. It is shown that the absolute stellar magnitude of these quasars is –13m, which corresponds to the luminosity of dwarf galaxies of low luminosity. It is suggested that the local quasars are formed in two ways: by ejection from galactic nuclei and in quasar associations without a parent galaxy, directly from protostellar matter.  相似文献   

7.
It is confirmed that the creation of stars in spiral (and perhaps also Irri) galaxies requires a physical parameter (X factor) additional to gas density. Consequently theX factor is an essential feature of stellar patterns and perhaps of stellar systems (spiral and other disk and spheroidal systems, globular clusters) and may be the key to the origin of the few, yet remarkably varied Hubble system of galaxies.
  1. It is shown that theX factor is organized over the whole galaxy and is a function of azimuth φ as well as radiusr. Only a galaxy-wide force field seems capable of explaining such anX(r, φ) factor either magnetic or gravitational in origin.
  2. If gravitational in origin, theX factor must be a shock wave, but a survey of observations in eight galaxies, including our own, shows no large-scale shocks associated with star creation. This provides further strong evidence against the density-shock theory of twin spiral arms.
  3. It is confirmed that galaxies of different Hubble types did not evolve from one another, so that each protogalaxy must possess a genetic factor which predetermines its evolution, and in particular its stellar systems. Thus the protogalactic genetic factor may be identical with theX factor.
  4. The case for a primordial magnetic field is strengthened, and it is shown that in our Galaxy and some others the field must be generally oblique to the disk. Such a field can explain theX(r, φ) factor in terms of a magneto-gravitational mechanism of gas clumping.
  5. An earlier, hydromagnetic theory of the Hubble types and of radio galaxies is extended by including theX factor to explain the various stellar systems observed in spiral, elliptical, lenticular and irregular galaxies.
  相似文献   

8.
The modified Strömgrenuvby filter system, which has been used to investigate the spectrophotometric evolution of elliptical galaxies, is also found to be a powerful tool for the determination of stellar parameters in elliptical galaxies, especially metal content and the stellar type of the dominant population. We present an introduction to the behaviour of the filter system based on comparison to stellar libraries and then explore the results with respect to composite systems: globular clusters, spirals, and ellipticals.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

9.
10.
11.
The first CCD photometric complete light curves of the eclipsing binary NSVS 7051868 were obtained during six nights in January 2016 in the B, V and Ic bands using the 0.25 m telescope of the Stazione Astronomica Betelgeuse in Magnago, Italy.These observations confirm the short period (P = 0.517 days) variation found by Shaw and collaborators in their online list (http://www.physast.uga.edu/~jss/nsvs/) of periodic variable stars found in the Northern Sky Variability Survey.The light curves were modelled using the Wilson–Devinney code and the elements obtained from this analysis are used to compute the physical parameters of the system in order to study its evolutionary status.A grid of solutions for several fixed values of mass ratio was calculated.A reasonable fit of the synthetic light curves of the data indicate that NSVS 7051868 is an A-subtype W Ursae Majoris contact binary system, with a low mass ratio of q = 0.22, a degree of contact factor f = 35.5% and inclination i = 85°. Our light curves shows a time of constant light in the secondary eclipse of approximately 0.1 in phase. The light curve solution reveals a component temperature difference of about 700 K. Both the value of the fill-out factor and the temperature difference suggests that NSVS 7051868 is a system in a key evolutionary stage of the Thermal Relaxation Oscillation theory.The distance to NSVS 7051868 was calculated as 180 pc from this analysis, taking into account interstellar extinction.  相似文献   

12.
We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈D〉 = 5.1 Mpc, 〈A e 〉 = 4.8 kpc, and 〈SB B (e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.  相似文献   

13.
We analysis VI CCD data of two open clusters Haffner 11 and Czernik 31 in order to determine their luminosity function, mass function and mass-segregation for the first time. The observed luminosity function is corrected for both data incompleteness and field star contamination. Theoretical stellar evolutionary isochrones are used to convert luminosity function into mass function. The Mass function slopes are derived as 1.22 ± 0.42 and 1.55 ± 0.38 for Haffner 11 and Czernik 31 respectively. They agree with the Salpeter value (x=1.35) within the errors. The effect of mass segregation are observed in both the clusters. The estimated dynamical relaxation time is less than age of the clusters. This indicates that they are dynamically relaxed. The cause of relaxation may be due to the dynamical evolution or imprint of star formation or both.  相似文献   

14.
We present a new method for deriving stellar masses and distances using the theory of radiatively driven winds as presented by Kudritzkiet al. (1989) and the stellar parameters derived from NLTE spectroscopic analysis. We illustrate the procedure with five stars observed in three open clusters and show that the method can be advantageous against the more usual of using the expression for the gravity. The comparison with evolutionary tracks indicates a possible discrepancy between the masses and helium abundances (when enhanced) derived from these tracks and those obtained by the other methods.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

15.
We consider a sample of 412 galaxies with radial velocities V LG < 2500 kms?1 situated in the sky region of RA = 13. m 0–19. m 0, Dec = +10?...+40? between the Local Void and the Supergalactic plane. One hundred and eighty-one of them have individual distance estimates. Peculiar velocities of the galaxies as a function of Supergalactic latitude SGB show signs of Virgocentric infall at SGB < 10? and motion from the Local Void at SGB > 60?. A half of the Hercules–Bootes galaxies belong to 17 groups and 29 pairs, with the richest group around NGC5353. A typical group is characterized by the velocity dispersion of 67 km s?1, the harmonic radius of 182 kpc, the stellar mass of 4.3 × 1010 M and the virialto- stellar mass ratio of 32. The binary galaxies have the mean radial velocity difference of 37 kms?1, the projected separation of 96 kpc, the mean integral stellar mass of 2.6×109M and the mean virial-to-stellar mass ratio of about 8. The total dark-matter-to-stellar mass ratio in the considered sky region amounts to 37 being almost the same as that in the Local Volume.  相似文献   

16.
R. Brasser  M.J. Duncan 《Icarus》2006,184(1):59-82
Observations suggest most stars originate in clusters embedded in giant molecular clouds [Lada, C.J., Lada, E.A., 2003. Annu. Rev. Astron. Astrophys. 41, 57-115]. Our Solar System likely spent 1-5 Myrs in such regions just after it formed. Thus the Oort Cloud (OC) possibly retains evidence of the Sun's early dynamical history and of the stellar and tidal influence of the cluster. Indeed, the newly found objects (90377) Sedna and 2000 CR105 may have been put on their present orbits by such processes [Morbidelli, A., Levison, H.F., 2004. Astron. J. 128, 2564-2576]. Results are presented here of numerical simulations of the orbital evolution of comets subject to the influence of the Sun, Jupiter and Saturn (with their current masses on orbits appropriate to the period before the Late Heavy Bombardment (LHB) [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]), passing stars and tidal force associated with the gas and stars of an embedded star cluster. The cluster was taken to be a Plummer model with 200-400 stars, with a range of initial central densities. The Sun's orbit was integrated in the cluster potential together with Jupiter and Saturn and the test particles. Stellar encounters were incorporated by directly integrating the effects of stars passing within a sphere centred on the Sun of radius equal to the Plummer radius for low-density clusters and half a Plummer radius for high-density clusters. The gravitational influence of the gas was modeled using the tidal force of the cluster potential. For a given solar orbit, the mean density, 〈ρ〉, was computed by orbit-averaging the density of material encountered. This parameter proved to be a good measure for predicting the properties of the OC. On average 2-18% of our initial sample of comets end up in the OC after 1-3 Myr. A comet is defined to be part of the OC if it is bound and has q>35 AU. Our models show that the median distance of an object in the OC scales approximately as 〈ρ−1/2 when . Our models easily produce objects on orbits like that of (90377) Sedna [Brown, M.E., Trujillo, C., Rabinowitz, D., 2004. Astrophys. J. 617, 645-649] within ∼1 Myr in cases where the mean density is or higher; one needs mean densities of order to create objects like 2000 CR105 by this mechanism, which are reasonable (see, e.g., Guthermuth, R.A., Megeath, S.T., Pipher, J.L., Williams, J.P., Allen, L.E., Myers, P.C., Raines, S.N., 2005. Astrophys. J. 632, 397-420). Thus the latter object may also be part of the OC. Close stellar passages can stir the primordial Kuiper Belt to sufficiently high eccentricities (e?0.05; Kenyon, S.J., Bromley, B.C., 2002. Astron. J. 123, 1757-1775) that collisions become destructive. From the simulations performed it is determined that there is a 50% or better chance to stir the primordial Kuiper Belt to eccentricities e?0.05 at 50 AU when . The orbit of the new object 2003 UB313 [Brown, M.E., Trujillo, C.A., Rabinowitz, D.L., 2005. Astrophys. J. 635, L97-L100] is only reproduced for mean cluster densities of the order of , but in the simulations it could not come to be on its current orbit by this mechanism without disrupting the formation of bodies in the primordial Kuiper Belt down to 20 AU. It is therefore improbable that the latter object is created by this mechanism.  相似文献   

17.
Measurements of lithium in stars of different galactic populations such as young open clusters ( Per, Pleiades, Praesepe, Coma, Hyades), very young stellar associations (Taurus-Auriga, Chamaeleon, Ophiuchus clouds), intermediate and old open clusters (NGC 752, M 67, NGC 188), old disc stars and halo stars give us the observational framework from which the galactic evolution of lithium has to be inferred. This element is produced mainly via three mechanisms: primordial nucleosynthesis, spallation reactions in the interstellar medium and thermonuclear reactions in some particular stellar evolutionary stages (novae, red giants). The complicated nucleosynthesis and the fact that astration of lithium in stars is not well understood, makes a direct interpretation of the lithium evolutionary abundance curve difficult. The constraints set by recent lithium measurements in very old open clusters and metal-deficient stars on galactic lithium production mechanisms are discussed. Current problems in the determination of the primordial lithium abundance are briefly reviewed.  相似文献   

18.
We present new values of the structural coefficients η j , and related quantities, for realistic models of distorted stars in close binary systems. Our procedure involves numerical integration of Radau’s equation for detailed structural data and we verified our technique by referring to the 8-digit results of Brooker & Olle (Mon. Not. R. Astron. Soc. 115:101, 1955) for purely mathematical models. We provide tables of representative values of η j , and related quantities, for j=2,3,…,7 for a selection of Zero Age Stellar Main Sequence (ZAMS) stellar models taken from the EZWeb compilation of the Dept. of Astronomy, University of Wisconsin-Madison. We include also some preliminary comparisons of our findings with the results of Claret and Gimenez (Astron. Astrophys. 519:A57 2010) for some observed stars.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号