首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents simulated channel patterns for various scenarios in a conceptual alluvial valley by an improved two-dimensional (2-D) mathematical model described in the companion paper. Starting from the same initial channel, different channel patterns have been simulated over a real time period of 250 days for varied boundary and initial conditions, including the inlet water discharge and sediment load, initial valley slope, and erodibility of river banks. Impacts of these control factors are discussed, in terms of the longitudinal bottom profiles of simulated fluvial channels, the geometry of channel cross sections, and the water surface profiles in the conceptual river valley. Results suggest that the upper and lower parts of the same channel may have different planforms because the sediment transport conditions of the two parts differ greatly. Simulated causal relationship between control variables and channel patterns agrees qualitatively with known channel pattern theories.  相似文献   

2.
3.
NumericalsimulationofthedetachmentdynamicsinNorthChinaBasinDong-Ning;ZHANG(张东宁)andRong-ShengZENG(曾融生)(InstituteofGeophysics,S...  相似文献   

4.
The influence of hot mantle intrusive body on tectonic stress field and displacement field of Dabie orogenic belt have been analyzed by means of finite element method. Numerical simulations show that the intrusion of hot mantle material leads to an extensional stress state in the upper crust of central Dabie mountains, while compressive stress state appears on both sides of orogenic belt under the action of horizontal compression from Yangtze craton. This is in accordance with the actual faulting tectonics in this area. Possible evolution trend in transition area is discussed, too. Contribution No. 99FE2020, Institute of Geophysics, China Seismological Bureau.  相似文献   

5.
A two-dimensional numerical model was presented for the simulation of wave breaking, runup and turbulence in the surf and swash zones. The main components of the model are the Reynolds-Averaged Navier–Stokes equations describing the average motion of a turbulent flow, a kε turbulence closure model describing the transformation and dissipation processes of turbulence and a volume of fluid technique for tracking the free surface motion. Nearshore wave evolution on a sloping bed, the velocity field and other wave characteristics were investigated. First, the results of the model were compared with experimental results for different surf zone hydrodynamic conditions. Spilling and plunging breakers were simulated and the numerical model investigated for different wave parameters. The turbulence field was also considered and the spatial and time-dependent variations of turbulence parameters were discussed. In the next stage of the study, numerical results were compared with two sets of experimental data in the swash zone. Generally, there is good agreement except for turbulence predictions near the breaking point where the model does not represent well the physical processes. On the other hand, turbulence predictions were found to be excellent for the swash zone. The model provides a precise and efficient tool for the simulation of the flow field and wave transformations in the nearshore, especially in the swash zone. The numerical model can simulate the surface elevation of the vertical shoreline excursion on sloping beaches, while swash–swash interactions within the swash zone are accounted for.  相似文献   

6.
On the basis of distribution of active fault and regional rheological structure, a three-dimensional finite element model of Sichuan-Yunnan region, China, is constructed to simulate contemporary crustal motion and stress distri- bution and discuss the dynamic mechanism of crustal motion and deformation in the Sichuan-Yunnan region. Lin- ear Maxwell visco-elastic model is applied, which includes the active fault zones, the elastic upper crust and vis- cous lower crust and upper mantle. Four different models with different boundary conditions and deep structure are calculated. Some conclusions are drawn through comparison. Firstly, the crustal rotation about the eastern syntaxis of the Himalaya in the Sicuan-Yunnan region may be controlled by the special dynamic boundary condition. The drag force of the lower-crust on the upper crust is not negligible. At the same time, the main active fault zones play an important role in the contemporary crustal motion and deformation in Sichuan-Yunnan region.  相似文献   

7.
Copper production is an essential component of the Chilean economy. During the extraction process of copper, large quantities of waste materials (tailings) are produced, which are typically stored in large tailing ponds. Thickened Tailings Disposal (TTD) is an alternative to conventional tailings ponds. In TTD, a considerable amount of water is extracted from the tailings before their deposition. Once a thickened tailings layer is deposited, it loses water and it shrinks, forming a relatively regular structure of tailings blocks with vertical cracks in between, which are then filled up with “fresh” tailings once the new upper layer is deposited. The dynamic response of a representative column of this complex structure made out of tailings blocks with softer material in between was analyzed using a periodic half-space finite element model. The tailings’ behavior was modeled using an elasto-plastic multi-yielding constitutive model, and Chilean earthquake records were used for the seismic analyses. Special attention was given to the liquefaction potential evaluation of TTD.  相似文献   

8.
Introduction More real models are being developed by the modern seismology. As we all know, the earth is not a simple elastic body. Oil and gas reservoir, ground surface, seashore zone, sea bottom layer, etc, are porous solid media with fluids. It has been confirmed that there are two main fluid flow mechanisms in these media (Dvorkin, Nur, 1993), i.e., the Biot flow mechanism (Biot, 1956, 1962) based on the macroscopic property and the Squirt-flow mechanism (Mavko, Nur, 1979) based on the …  相似文献   

9.
It is known that sedimentary rocks demonstrate velocity dispersion in the acoustic log frequency range. In this paper we have calculated the waveforms of sonic log for a borehole located in a viscoelastic medium. The acoustic field in the borehole has been obtained for acoustic multipole sources. To describe the viscoelastic properties of a rock we used the Cole–Cole model. This model describes the dispersion of acoustic wave velocities and quality factors in a wide frequency range. To solve the acoustic log direct problem we have applied the double integral Fourier transform (RAI method). The results obtained have shown the feasibility of S-wave velocity dispersion estimation from acoustic dipole waveform processing.  相似文献   

10.
Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.  相似文献   

11.
Over the past few decades, earthquake engineering research mainly focused on the effects of strong seismicshaking. After the 1999 earthquakes in Turkey and Taiwan, and thanks to numerous cases where fault rupture causedsubstantial damage to structures, the importance of faulting-induced deformation has re-emerged. This paper, along withits companion (Part Ⅱ), exploits parametric results of finite element analyses and centrifuge model testing in developing afour-step semi-analytical approach for analysis of dip-slip (normal and thrust) fault rupture propagation through sand, itsemergence on the ground surface, and its interaction with raft foundations. The present paper (Part Ⅰ) focuses on the effectsof faulting in the absence of a structure (i.e., in the free-field). The semi-analytical approach comprises two-steps: the firstdeals with the rupture path and the estimation of the location of fault outcropping, and the second with the tectonically-induced displacement profile at the ground surface. In both cases, simple mechanical analogues are used to derive simplifiedsemi-analytical expressions. Centrifuge model test data, in combination with parametric results from nonlinear finite elementanalyses, are utilized for model calibration. The derived semi-analytical expressions are shown to compare reasonably wellwith more rigorous experimental and theoretical data, thus providing a useful tool for a first estimation of near-fault seismichazard.  相似文献   

12.
Introduction Finite element method has a wide application in analyzing the crust tectonic stress field and tectonic deformation field. WANG, et al (1980), for example, reversed the crust stress field and forecast future seismic risky area using finite element way. WANG and CHEN (1980) made the numerical simulation on modern tectonic stress field for China and its adjacent area using finite element and obtained the whole picture of tectonic stress filed in China. Except analyzing the tect…  相似文献   

13.
The potentialities of dynamic–stochastic simulation are analyzed as applied to changes in the regime of summer–autumn rain-flood runoff, which is the governing phase of water regime in the Amur Basin. The scenario of climate changes was formulated in a maximally generalized form as an increase in the sum of seasonal precipitation by an amount of up to 20% of its average long-term value; therefore, all obtained estimates are to be regarded as tentative. Notwithstanding the relatively poor support by observation data, a regionally adapted hydrological model with a flood cycle model (FCM) as its core yields reliable and convincing results. The most important conclusion regards the possible disproportionate response to a climate impact, i.e., the relative increase in minimal-runoff characteristics is far in excess of the assumed increase in the total precipitation.  相似文献   

14.
Abstract

Edited by C. J. Harris. Academic Press, 1979. 816 pp. (£19.80, $48.00) (ISBN 0 123283507)  相似文献   

15.
According to studies of more than 20 earthquakes with MS≥5.0 in North China, seven features of the short-term and imminent earthquake precursors have been summarized in this paper. At the same time, taking the short-term and imminent earthquake stage as the physical process of a source's medium softening and fault creep, we calculated temporal variation of mean stress, maximum shear stress, body strain, and pore pressure in some certain points (supposed stations) in the source area and its adjacent area by using an anisotropic and nonlinear source model and a finite element method. According to an analysis of these theoretical curves, we conclude that the short-term and imminent earthquake precursors have such characteristics as complex shapes, exponential growth of the precursor number with tune, and precursors' migration from the outside area to the source area, which to a certain extent reveal the cause of the characteristics of the short-term and imminent earthquake precursor field.  相似文献   

16.
Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed athree-dimensional rheologic inclusion model and theory to study the earthquake preparation process. By usingcorrespondence principle in the theory of rheologic mechanics, we derived the analytic expression of the viscoe-lastic displacement at an arbitrary point (x, y, z) in three directions of x, y and z-axes (i. e., U(r, t), V*(r, t) and W(r,t)) produced by a three-dimension inclusion in the semi-infinite rheologic medium defined by the standard linearrheologic model.  相似文献   

17.
ABSTRACT

The rainfall–runoff process is governed by parameters that can seldom be measured directly for use with distributed models, but are rather inferred by expert judgment and calibrated against historical records. Here, a comparison is made between a conceptual model (CM) and an artificial neural network (ANN) for their ability to efficiently model complex hydrological processes. The Sacramento soil moisture accounting model (SAC-SMA) is calibrated using a scheme based on genetic algorithms and an input delay neural network (IDNN) is trained for variable delays and hidden layer neurons which are thoroughly discussed. The models are tested for 15 ephemeral catchments in Crete, Greece, using monthly rainfall, streamflow and potential evapotranspiration input. SAC-SMA performs well for most basins and acceptably for the entire sample with R2 of 0.59–0.92, while scoring better for high than low flows. For the entire dataset, the IDNN improves simulation fit to R2 of 0.70–0.96 and performs better for high flows while being outmatched in low flows. Results show that the ANN models can be superior to the conventional CMs, as parameter sensitivity is unclear, but CMs may be more robust in extrapolating beyond historical record limits and scenario building.
EDITOR M.C. Acreman; ASSOCIATE EDITOR not assigned  相似文献   

18.
Seismic hazard assessment based on urban active faults can provide scientific bases for city planning and projectconstruction,while numerical simulation of strong ground motion is an important method for seismic hazard pre-diction and assessment.A 3-D physical model in conformity with real strata configuration of(mainly)the Quater-nary is a prerequisite to ensure the reliability of the simulation results.In this paper,we give a detailed account ofthe technical scheme and process for creating a 3-D physical model in Kunming basin.The data used are synthe-sized from seismogeological data,borehole data,topographic data,digital elevation mode(DEM)data,seismicexploration results and wave velocity measurements.Stratigraphic division is based mainly on shear wave velocity,with strata sequence taken into consideration.The model construction is finally accomplished with ArcGIS andmany relevant programming techniques via layer-by-layer stacking(in depth direction)of the adjacent mediuminterfaces(meshes).Meanwhile,a database of 3-D physical models is set up,which provides model data and pa-rameters for strong ground motion simulation.Some processing methods and significant issues are also addressedin the paper in accordance with different types of exploration and experimental data.  相似文献   

19.
《Journal of Hydrology》2003,270(1-2):39-48
The Kefar Uria group of wells have experienced an increase of salinity of the pumped water in the last two decades. The source of salinity is not known. Geohydrological and geochemical considerations of Part 1 (Avissar et al., in press) suggest two possible mechanisms and sources. The first source is infiltrating at the top of the aquifer, in contact with the overlaying formation and is close to the wells. The second source is deep and more distant and is attributed to salt leaching. In the present study, a methodology is developed in order to select the most probable source by quantitative modeling of flow and transport. The problem is more difficult than similar ones investigated in the literature, because of the complex three-dimensional flow pattern. However, simplified models can be used for the limited scope of source identification. The aquifer is modeled as a semi-infinite confined one under steady state conditions. The saline water input area and the 13 wells are represented by source distributions and an analytical solution is obtained for the flow field. A best fit between computed and measured well pressure heads leads to reasonable value of the identified permeability. Advective solute transport from salinity sources to wells is modeled numerically by particle tracking and leads to partition of solute flux among wells. Comparison of calculated wells salinity and the measured ones leads to the conclusive selection of one of the sources as the most probable one.  相似文献   

20.
Over the past few decades, earthquake engineering research mainly focused on the effects of strong seismic shaking. After the 1999 earthquakes in Turkey and Taiwan, and thanks to numerous cases where fault rupture caused substantial damage to structures, the importance of faulting-induced deformation has re-emerged. This paper, along with its companion (Part Ⅱ), exploits parametric results of finite element analyses and centrifuge model testing in developing a four-step semi-analytical approach for analysis of dip-slip (normal and thrust) fault rupture propagation through sand, its emergence on the ground surface, and its interaction with raft foundations. The present paper (Part Ⅰ) focuses on the effects of faulting in the absence of a structure (i.e., in the free-field). The semi-analytical approach comprises two-steps: the first deals with the rupture path and the estimation of the location of fault outcropping, and the second with the tectonically- induced displacement profile at the ground surface. In both cases, simple mechanical analogues are used to derive simplified semi-analytical expressions. Centrifuge model test data, in combination with parametric results from nonlinear finite element analyses, are utilized for model calibration. The derived semi-analytical expressions are shown to compare reasonably well with more rigorous experimental and theoretical data, thus providing a useful tool for a first estimation of near-fault seismic hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号