首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The observations of the ACTIVE Project satellites in the interval of March 17–23, 1990 were analyzed for the purpose of studying the response of the outer ionosphere to the magnetic storm with SSC on March 20 at 22.43 UT. In particular, measurements of thermal plasma parameters were used, but VLF broadband measurements and data on energetic ion and electron fluxes in the range of 17.7–272 keV were also available. The results of this case study show that the observations in the morning sector at altitudes around 2000 km reflect well the state of the plasmasphere during enhanced activity, namely the depth to which the plasmasphere has been affected by enhanced magnetospheric convection. They also provide the possibility of monitoring the initial phase of recovery. The early evening observations of the plasma parameters in the outer ionosphere at altitudes of 500–1000 km indicate a distinct trough in electron concentration. In the dusk sector, the equatorward edge of this trough can be assumed to be the projection of the equatorial plasmapause. This, combined with the occurrence of electron temperature peaks and with the morning plasmapause position, enables one to judge whether the plasmaspheric bulge has formed and whether an inner plasmapause has occurred.  相似文献   

2.
3.
The ring current is conventionally considered responsible for the shift of the boundary of solar proton penetration into the inner Earth’s magnetosphere during magnetic storms. The cases of a boundary shift were observed in some works on the dark side before the onset of a magnetic storm, i.e., at positive values of the Dst index. In this work, this type of shift of the penetration boundary is considered in detail with two storms as examples. It is shown that the corresponding distortion of the magnetosphere configuration is induced by an increase in the solar wind pressure during the initial phase of a magnetic storm. The current induced in this case on the magnetopause is closed by a current in the equator plane, which changes the configuration of the dark side of the inner magnetosphere, weakens the magnetic field, and allows solar protons to penetrate the inner magnetosphere. The significant difference in the positions of the penetration boundary and the boundary found from models of the magnetosphere magnetic field can be explained by insufficient consideration of closing currents.  相似文献   

4.
au u¶rt;um u mu ¶rt; umu u amu, aa aum, u nuu anmuaum n mu , a ma u n¶rt;nu, m amau uu aum mu u( a a) nnua nu u nam nmama aum mu, aa naam uu . au mmuu mu u a auu ¶rt;a aaua a ¶rt;am a mum uumuu naam ¶rt;a na u ama, n¶rt; a¶rt; uu nu aua ¶rt;nuuaum n mu u. mu ¶rt; num uu, a mmmuu namu naamau , ¶rt; m¶rt; u aua nuu anmuaum n, auam mn uu, a m naama .  相似文献   

5.
Method of short-term forecast intensity of geomagnetic storms, expected by effect Solar wind magnetic clouds in the Earth’s magnetosphere is developed. The method is based calculation of the magnetic field clouds distribution, suitable to the Earth, the initial satellite measurements therein components of the interplanetary magnetic field in the solar ecliptic coordinate system. Conclusion about the magnetic storm intensity is expected on the basis of analysis of the dynamics of the reduced magnetic field Bz component clouds and established communication intensity of geomagnetic storms on Dst-index values and Bz component of the interplanetary magnetic field vector.  相似文献   

6.
The behavior of correlation tensors of fluctuations in the solar wind magnetic field and velocity is studied during different phases of a solar cycle on the basis of a 45-year measurement series of solar wind parameters. It is found that the orientation of fluctuations in the magnetic field and velocity is approximately axisymmetric relative to the direction of a local magnetic field during high solar activity. This symmetry is violated significantly during periods of low solar activity, and deviations from the symmetry are regular and oppositely directed during minima of even and odd 11-year cycles, which is probably connected with variations in the orientation of the Sun??s magnetic field. The dependence of the power of fluctuations on the local magnetic field direction reveals significant deviations from local symmetry during all phases of a solar cycle, especially for velocity fluctuations.  相似文献   

7.
The solar wind–magnetosphere coupled system is characterized by dynamical processes. Recent works have shown that nonlinear couplings and turbulence might play a key role in the study of solar wind–magnetosphere interaction processes.Within this framework, this study presents a statistical analysis aimed to investigate the relationship between solar wind MHD turbulence and geomagnetic activity at high and low latitudes as measured by the AE and SYM-H indices, respectively. This analysis has been performed for different phases of solar cycle 23. The state of turbulence was characterized by means of 2-D histograms of the normalized cross-helicity and the normalized residual energy. The geomagnetic response was then studied in relation to those histograms.The results found clearly show that, from a statistical point of view, solar cycle 23 is somewhat peculiar. Indeed, good Alfvénic correlations are found unexpectedly even during solar activity maximum. This fact has implications on the geomagnetic response as well since a statistical relationship is found between Alfvénic fluctuations and auroral activity. Conversely, solar wind turbulence does not seem to play a relevant role in the geomagnetic response at low latitudes.  相似文献   

8.
We analyze the data obtained using the Arecibo incoherent scatter radar to examine the response of the topside ionosphere to a moderate geomagnetic storm that occurred during the period March 7–11, 2008. During this time period a magnetic storm with a non-monotonic main phase decrease in the Dst index occurred. The recovery phase also exhibited a secondary Dst decrease. During the initial phase of the storm, Te and Ti increased coincident with the arrival of the solar wind. The main phase registered an increase in proton concentration proportional to Ne while temperatures reached the lowest values. Variations in O+ concentration were not significant but a reduction in helium fraction was observed. Soon after the peak of the storm, the transition height between the topside ionosphere and the protonosphere, where H+ ions dominate composition, was lower than would be expected during quiet conditions and this behavior lasted for approximately 12 h.  相似文献   

9.
The paper analyses the development of the main phase of magnetic storms with Dst ≤ −50 nT, the interplanetary source of which consists of eight types of solar wind streams: magnetic clouds (MC, 17 storms); corotating interaction regions (CIR, 49 storms); Ejecta (50 storms); compressed region (Sheath) before Ejecta ShE (34 storms); the Sheath before a magnetic cloud ShMC (6 storms); all Sheath before all ICME, ShE + ShMC (40 storms); all ICME, MC + Ejecta (67 storms); and an indeterminate type of stream IND (34 storms).  相似文献   

10.
Possible configurations of the magnetic field in the outer magnetosphere during geomagnetic polarity reversals are investigated by considering the idealized problem of a magnetic multipole of order m and degree n located at the centre of a spherical cavity surrounded by a boundless perfect diamagnetic medium. In this illustrative idealization, the fixed spherical (magnetopause) boundary layer behaves as a perfectly conducting surface that shields the external diamagnetic medium from the compressed multipole magnetic field, which is therefore confined within the spherical cavity. For a general magnetic multipole of degree n, the non-radial components of magnetic induction just inside the magnetopause are increased by the factor 1 + [(n + 1)/n] relative to their corresponding values in the absence of the perfectly conducting spherical magnetopause. An exact equation is derived for the magnetic field lines of an individual zonal (m = 0), or axisymmetric, magnetic multipole of arbitrary degree n located at the centre of the magnetospheric cavity. For such a zonal magnetic multipole, there are always two neutral points and n – 1 neutral rings on the spherical magnetopause surface. The two neutral points are located at the poles of the spherical magnetopause. If n is even, one of the neutral rings is coincident with the equator; otherwise, the neutral rings are located symmetrically with respect to the equator. The actual existence of idealized higher-degree (n > 1) axisymmetric magnetospheres would necessarily imply multiple (n + 1) magnetospheric cusps and multiple (n) ring currents. Exact equations are also derived for the magnetic field lines of an individual non-axisymmetric magnetic multipole, confined by a perfectly conducting spherical magnetopause, in two special cases; namely, a symmetric sectorial multipole (m = n) and an antisymmetric sectorial multipole (m = n – 1). For both these non-axisymmetric magnetic multipoles, there exists on the spherical magnetopause surface a set of neutral points linked by a network of magnetic field lines. Novel magnetospheric processes are likely to arise from the existence of magnetic neutral lines that extend from the magnetopause to the surface of the Earth. Finally, magnetic field lines that are confined to, or perpendicular to, either special meridional planes or the equatorial plane, when the multipole is in free space, continue to be confined to, or perpendicular to, these same planes when the perfectly conducting magnetopause is present.Also Honorary Research Associate, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK and Visiting Reader in Physics. University of Sussex, Falmer, Brighton BN1 9QH, UK  相似文献   

11.
The spatial structure of intensive Pc5 pulsations of the geomagnetic field and riometer absorption during the recovery phase of a strong magnetic storm that occurred on October 31, 2003, have been considered in detail. The global structure of disturbances has been analyzed based on a global network of magnetometers and riometers supplemented by the data of magnotometers and particle detectors on geostationary satellites GOES and LANL. The local spatial structure was studied by the data of a regional network of Finland vertical riometers and the stations at the IMAGE magnetic network. Quasiperiodic variations in the magnetic field and riometer absorption are generally similar and have a close frequency composition; nevertheless, their local spatial structures are different, as a result of which the concept that riometer absorption pulsations represent a purely modulation process is doubtful. It is assumed that the observed variations are oscillations of two related systems: the magnetospheric MHD waveguide/resonator and systems including cyclotron noise and electrons. Geomagnetic Pc5 oscillations during the recovery phase of a strong magnetic storm supposedly result from the generation of the magnetospheric waveguide on magnetospheric flanks. An analysis of azimuthal propagation phase velocities indicates that these oscillations depend on intramagnetospheric parameters rather than on the solar wind velocity. The magnetospheric waveguide is in a metastable state when solar wind velocities are high, and the quasiperiodic fluctuations of the solar wind pressure stimulate the excitation of the waveguide.  相似文献   

12.
An abrupt change in the latitudinal profile of energetic electrons in the Earth’s outer radiation belt during magnetic storms is explained in many publications by a loss of electrons at L = 4–7 resulting from their departure to the atmosphere or to the magnetopause. In the present work, the loss of electrons is explained primarily by adiabatic transformation of the magnetic drift trajectories. For this purpose, the effect of dawnto- dusk asymmetry measured by low-orbit SERVIS-1 and KORONAS-F satellites is involved.  相似文献   

13.
The dependence of the particle energy spectra on the acceleration and loss rates is studied based on the analytical solutions to the equation for the particle distribution function, taking into account diffusion in the momentum space (stochastic acceleration) and loss (due to particle escape from the acceleration region). The energy spectra and time dynamics of the MeV electron fluxes, observed based on the geostationary satellite data during the prolonged recovery phases of the known magnetic storms of June 11, 1980 and November 3–4, 1993, have been analytically described. The acceleration and loss rates have been estimated for these storms. A comparison is performed with the preciously studied energy spectra of MeV electrons and with the acceleration and loss rates during the recovery phases of the magnetic storms of January 10, 1997, and April 6, 2000.  相似文献   

14.
The theory of relaxation of geomagnetic depression observed during magnetic storm has been proposed based on the knowledge of the interaction between the Dst index and the magnetotail current. It has been indicated that the disruption of the tail current that was enhanced during the storm main phase can be caused by the interchange instability, which develops in the boundary plasma sheet due to the sheet curvature in the near to the Earth region and due to a sharp, directed toward the curvature center, plasma pressure gradient at the boundary between the plasma sheet and the tail lobe. The dispersion equation and expression for the instability growth rate have been obtained. The theoretically predicted characteristic time of storm depression relaxation τ is ~10 h and is in good agreement with the experimental estimate.  相似文献   

15.
Using the empirical magnetic field model dependent on the Dst index and solar wind dynamic pressure, we calculated the behaviour of the contour B = Bs in the equatorial plane of the magnetosphere where Bs is the magnetic field in the subsolar point at the magnetopause. The inner domain of the magnetosphere outlined by this contour contains the bulk of geomag-netically trapped particles. During quiet time the boundary of the inner magnetosphere passes at the distance ∼10RE at noon and at ∼7RE at midnight. During very intense storms this distance can be reduced to 4–5 RE for all MLT. The calculation results agree well with the satellite measurements of the magneto-pause location during storms. The ionospheric projection of the B = Bs contour calculated with the Euler potential technique is close to the equatorward edge of the auroral oval.  相似文献   

16.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

17.
The structure and dynamics of auroras in the midnight sector during substorms, which develop during the magnetic storm main phase as compared to the characteristics of a typical auroral substorm, have been studied using the ground-based and satellite observations. It has been found out that a difference from the classical substorm is observed in auroras during the magnetic storm main phase. At the beginning of the storm main phase, the series of pseudobreakups with the most pronounced jump-like motion toward the equator shifts to lower latitudes. The substorm expansion phase can be observed not only as arc jumps to higher latitudes but also as an explosive expansion of a bright diffuse luminosity in all directions. During the magnetic storm main phase, auroras are mainly characterized by the presence of stable extensive rayed structures and by the simultaneous existence of different auroral forms, typical of different substorm phases, in the TV camera field of view.  相似文献   

18.
The energy spectrum of electrons with energies of 0.8–6.0 MeV has been analyzed based on the data of the Express-A2 geostationary satellite and time variations in the fluxes of electrons with energies higher than 0.6 and 2 MeV (according to the GOES-10 satellite data) before and after a weak geomagnetic storm on April 9–10, 2002, which developed during the prolonged (about ten days) recovery phase of a strong magnetic storm on April 6, 2000. The effect of the secondary injection and acceleration caused by an intensification of substorm activity during a weak storm on the electron flux dynamics has been studied for the first time. The energy spectra and time variations in the electron flux dynamics before and after a weak storm have been described based on analytical solutions to the kinetic equation for the electron distribution function with regard to the stochastic acceleration and loss rates. It has been established that there were different acceleration and loss rates before and after the weak storm of April 9–10, 2000.  相似文献   

19.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

20.
利用2004年11月6~10日磁暴发生期间南极区域内的中国中山站GPS常年跟踪站(ZHON)和国际GPS服务站(CAS1, MCM4, SYOG, MAW1)的GPS观测数据,计算了可观测卫星传播路径上的TEC和ROT值,进而依据TEC的波动频率和幅度推估出极区碎片的个数,分析了极区磁暴期间电离层响应及其极区碎片特性. 最终所得TEC和ROT结果与极区地磁场Dst和Kp指数信息相吻合,如实地反映了磁暴事件和极区碎片的出现. 本文所做工作在国内尚未开展,因此所用方法和结论为将来这一方向的研究提供了一定的参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号