首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Disturbances in the solar wind density, geomagnetic field, and magnetospheric plasma density and fluxes are analyzed. The disturbances have the same sign and are close to each other in time. They accompany the process of amplitude modulation of Pc1 geomagnetic pulsations during the recovery phase of the moderate magnetic storm of April 10–11, 1997. The magnetospheric disturbances were recorded by ground-based observatories and on spacecraft in all local time sectors with insignificant time delays. It is concluded that in this case variations in the geomagnetic field and magnetospheric plasma density are primary, whereas the amplitude modulation of Pc1, 2 is a secondary manifestation of fast magnetosonic (FMS) waves that are generated during the interaction between the magnetosphere and solar wind density irregularities.  相似文献   

2.
An interpretation of the nature of the sudden ionospheric disturbance in terms of response to X-ray flux enhancement in the band 1–20 Å has been made by many authors. Last decades investigations revealed presence of important qualitative distinctions in spatially temporal pattern of geomagnetic response to solar flares featuring harder radiation spectra (with quanta energies above 100 keV). These distinctions can not be adequately described by classical theory implying ionization growing on E and D ionosperic layers and intensification of Sq-current system. In this respect, solar flare on 4 November 2003 characterizing by existence of two separate (time lag ~45 min) spectral maximums in X-rays range (average quantum energy <100 keV) and in γ-rays range (average quantum energy >100 keV), represents convenient proving ground for study of specifics the geomagnetic response to bursts marked by different hardness. In current article, we show that this flare has a number of unusual features including specific variation of accompanying current system and magnetospheric manifestation that is observed in trapped radiation fluxes and magnetic field on geosynchronous orbit. Possible physical mechanism leading to intensification of magnetospheric–ionospheric current system is discussed.  相似文献   

3.
This paper investigates the ionospheric and geomagnetic responses during the 28 March 2005 and 14 May 2005 Sumatran earthquakes using GPS and magnetometer stations located in the near zone of the epicenters. These events occurred during low solar and geomagnetic activity. TEC oscillations with periods of 5–10 min were observed about 10–24 min after the earthquakes and have horizontal propagation velocities of 922–1259 m/s. Ionospheric disturbances were observed at GPS stations located to the northeast of the epicenters, while no significant disturbances were seen relatively east and south of the epicenters. The magnetic field measurements show rapid fluctuations of 4–5 s shortly after the earthquake, followed by a Pc5 pulsation of 4.8 min about 11 min after the event. The correlation between the ionospheric and geomagnetic responses shows a good agreement in the period and time lag of the peak disturbance arrival, i.e. about 11–13 min after the earthquake.  相似文献   

4.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

5.
High geomagnetic activity occurs continuously during high-speed solar wind streams, and fluxes of relativistic electrons observed at geosynchronous orbit enhance significantly. High-speed streams are preceded by solar wind compression regions, during which time there are large losses of relativistic electrons from geosynchronous orbit. Weak to moderate geomagnetic storms often occur during the passage of these compression regions; however, we find that the phenomena that occur during the ensuing high-speed streams do not depend on whether or not a preceding storm develops. Large-amplitude Alfvén waves occur within the high-speed solar wind streams, which are expected to lead to intermittent intervals of significantly enhanced magnetospheric convection and to thus also lead to repetitive substorms due to repetitively occurring reductions in the strength of convection. We find that such repetitive substorms are clearly discernible in the LANL geosynchronous energetic particle data during high-speed stream intervals. Global auroral images are found to show unambiguously that these events are indeed classical substorms, leading us to conclude that substorms are an important contributor to the enhanced geomagnetic activity during high-speed streams. We used the onsets of these substorms as indicators of preceding periods of enhanced convection and of reductions in convection, and we have used ground-based chorus observations from the VELOX instrument at Halley station as an indicator of magnetospheric chorus intensities. These data show evidence that it is the periods of enhanced convection that precede substorm expansions, and not the expansions themselves, that lead to the enhanced dawn-side chorus wave intensity that has been postulated to cause the energization of relativistic electrons. If this inference is correct, and if it is chorus that energizes the relativistic electrons, then high-speed solar wind streams lead to relativistic electron flux enhancements because the embedded large-amplitude Alfvén waves give multi-day periods of intermittent significantly enhanced convection.  相似文献   

6.
An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay) and a low latitude (L’Aquila, Italy) station during the Earth’s passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz) and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth’s magnetosphere.  相似文献   

7.
This paper is devoted to the morphology of Pc1 geomagnetic pulsations (frequency range 0.2–5.0 Hz). This study is based on the series of continuous observations of Pc1 pulsations during more than three solar cycles (July 1957–December 1995). The main attention is given to the temporal characteristics of Pc1 activity, i.e. daily, seasonal and cyclic variations, and also the relationship of Pc1 activity with magnetic storms, sector structure of the interplanetary magnetic field and parameters of the solar wind. The results may be used in the studies of medicobiologic aspects of the problem of solar–terrestrial relations.  相似文献   

8.
Ground-based geomagnetic Pc5 (2–7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ~ 30–50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called “anomaly rectification” in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth’s magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.  相似文献   

9.
The spatial structure of intensive Pc5 pulsations of the geomagnetic field and riometer absorption during the recovery phase of a strong magnetic storm that occurred on October 31, 2003, have been considered in detail. The global structure of disturbances has been analyzed based on a global network of magnetometers and riometers supplemented by the data of magnotometers and particle detectors on geostationary satellites GOES and LANL. The local spatial structure was studied by the data of a regional network of Finland vertical riometers and the stations at the IMAGE magnetic network. Quasiperiodic variations in the magnetic field and riometer absorption are generally similar and have a close frequency composition; nevertheless, their local spatial structures are different, as a result of which the concept that riometer absorption pulsations represent a purely modulation process is doubtful. It is assumed that the observed variations are oscillations of two related systems: the magnetospheric MHD waveguide/resonator and systems including cyclotron noise and electrons. Geomagnetic Pc5 oscillations during the recovery phase of a strong magnetic storm supposedly result from the generation of the magnetospheric waveguide on magnetospheric flanks. An analysis of azimuthal propagation phase velocities indicates that these oscillations depend on intramagnetospheric parameters rather than on the solar wind velocity. The magnetospheric waveguide is in a metastable state when solar wind velocities are high, and the quasiperiodic fluctuations of the solar wind pressure stimulate the excitation of the waveguide.  相似文献   

10.
本文对磁宁静时的123个动压变化事件(不包含激波事件)进行了统计研究.研究表明,在白天侧(9~15MLT)同步轨道磁场z分量对太阳风动压增大、减小事件具有较强的正响应,而在夜侧(21~3MLT)响应明显减弱,响应幅度具有明显的磁地方时分布.对动压增大事件的平均响应幅度在午前最大,而对动压减小事件的平均响应幅度在午后达到...  相似文献   

11.
The occurrence of pearl-type (Pc 1) micropulsations recorded at the mid-latitude station Nagycenk (Hungary) during a half solar cycle showed a quite regular variation on this long time scale. Around solar activity maximum, the number of days with Pc 1 occurrence was rather low, while it began to increase during medium solar activity rising to a maximum around solar activity minimum. Pc 1 pulsations have been analyzed in relation to further parameters and on a shorter time scale, too. Based on data of 2 years with maximum Pc 1 occurrence (around solar activity minimum in 1985 and 1986), a seasonal variation was also found. Additionally, it was confirmed that pearl-type micropulsations might frequently occur, on and after days, with geomagnetic disturbances. At Nagycenk, the selected geomagnetic disturbances were generally associated with an increased ionospheric absorption of radio waves caused by enhanced ionization due to particle precipitation from the magnetosphere into the lower ionosphere. Whistler observations carried out at Panska Veš (a station in the Czech Republic) showed a significant whistler activity connected with these geomagnetic disturbances, however, no after-effect appeared in whistler activity. One of the main goals of the present study was to find a relationship between Pc 1 pulsations and whistlers. Results revealing an increased whistler activity associated with Pc 1 occurrences confirm our previous findings rather convincingly. The latter ones hinted at the probability that certain magnetospheric configurations, e.g. geomagnetic field line shells and whistler ducts are closely connected, as similar positions of the two structures were found within the magnetosphere when characteristics of Pc 3 pulsations and whistlers were analyzed.  相似文献   

12.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

13.
While searching for electromagnetic effects of the earthquakes, impulse-type signals in the frequency range of 0–5 Hz preceding the earthquake or following it have been detected. The advance or delay time is from 0 to 5 min. The signals are observed as single or pair impulses. It is supposed that the signals make a significant impact on the state of the magnetosphere and ionosphere. As a result, a sharp change in the regime of Pc1 geomagnetic pulsations is possible. These effects are analyzed on the basis of observations of the geomagnetic pulsations at the Borok Geophysical Observatory.  相似文献   

14.
Pc3 geomagnetic field fluctuations detected at low latitude (L’Aquila, Italy) during the passage of a high velocity solar wind stream, characterized by variable interplanetary magnetic field conditions, are analyzed. Higher frequency resonant fluctuations and lower frequency phenomena are simultaneously observed; the intermittent appearance and the variable frequency of the longer period modes can be well interpreted in terms of the variable IMF elements; moreover their polarization characteristics are consistent with an origin related to external waves propagating in antisunward direction. A comparison with simultaneous observations performed at Terra Nova Bay (Antarctica) provides additional evidence for a clear relationship between the IMF and Pc3 pulsations also at very high latitudes.  相似文献   

15.
Ultra low frequency (ULF) waves incident on the Earth are produced by processes in the magnetosphere and solar wind. These processes produce a wide variety of ULF hydromagnetic wave types that are classified on the ground as either Pi or Pc pulsations (irregular or continuous). Waves of different frequencies and polarizations originate in different regions of the magnetosphere. The location of the projections of these regions onto the Earth depends on the solar wind dynamic pressure and magnetic field. The occurrence of various waves also depends on conditions in the solar wind and in the magnetosphere. Changes in orientation of the interplanetary magnetic field or an increase in solar wind velocity can have dramatic effects on the type of waves seen at a particular location on the Earth. Similarly, the occurrence of a magnetospheric substorm or magnetic storm will affect which waves are seen. The magnetosphere is a resonant cavity and waveguide for waves that either originate within or propagate through the system. These cavities respond to broadband sources by resonating at discrete frequencies. These cavity modes couple to field line resonances that drive currents in the ionosphere. These currents reradiate the energy as electromagnetic waves that propagate to the ground. Because these ionospheric currents are localized in latitude there are very rapid variations in wave phase at the Earth’s surface. Thus it is almost never correct to assume that plane ULF waves are incident on the Earth from outer space. The properties of ULF waves seen at the ground contain information about the processes that generate them and the regions through which they have propagated. The properties also depend on the conductivity of the Earth underneath the observer. Information about the state of the solar wind and the magnetosphere distributed by the NOAA Space Disturbance Forecast Center can be used to help predict when certain types and frequencies of waves will be observed. The study of ULF waves is a very active field of space research and much has yet to be learned about the processes that generate these waves.  相似文献   

16.
The solar wind velocity is the primary driver of the electron flux variability in Earth's radiation belts. The response of the logarithmic flux (“log-flux”) to this driver has been determined at the geosynchronous orbit and at a fixed energy [Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W., 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. Journal of Geophysical Research 95(A9), 15,133–15,140) and as a function of L shell and fixed energy [Vassiliadis, D., Klimas, A.J., Kanekal, S.G., Baker, D.N., Weigel, R.S., 2002. Long-term average, solar-cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed. Journal of Geophysical Research 107, doi:10.1029/2001JA000506). In this paper we generalize the response model as a function of particle energy (0.8–6.4 MeV) using POLAR HIST measurements. All three response peaks identified earlier figure prominently in the high-altitude POLAR measurements. The positive response around the geosynchronous orbit is peak P1 (τ=2±1 d; L=5.8±0.5; E=0.8–6.4 MeV), associated with high-speed, low-density streams and the ULF wave activity they produce. Deeper in the magnetosphere, the response is dominated by a positive peak P0 (0±1 d; 2.9±0.5RE; 0.8–1.1 MeV), of a shorter duration and producing lower-energy electrons. The P0 response occurs during the passage of geoeffective structures containing high IMF and high-density parts, such as ICMEs and other mass ejecta. Finally, the negative peak V1 (0±0.5 d; 5.7±0.5RE; 0.8–6.4 MeV) is associated with the “Dst effect” or the quasiadiabatic transport produced by ring-current intensifications. As energies increase, the P1 and V1 peaks appear at lower L, while the Dst effect becomes more pronounced in the region L<3. The P0 effectively disappears for E>1.6 MeV because of low statistics, although it is evident in individual events. The continuity of the response across radial and energy scales supports the earlier hypothesis that each of the three modes corresponds to a qualitatively different type of large-scale electron acceleration and transport.  相似文献   

17.
To study the relations of the polar cap (PC) magnetic activity (characterized by the PC index) to magnetic disturbances in the auroral zone (AL index) the behavior of 62 repetitive bay-like magnetic disturbances has been analyzed. It was found that the PC index, derived as a proxy of the geoeffective interplanetary electric field Em, starts to increase, on average, about 30 min ahead of the magnetic disturbance onset. Value of Em and PC~2 mV/m seems to be necessary for development of the repetitive bay-like disturbances with peak AL exceeding 400 nT. Growth phase duration (the time interval between the start of PC increase and AL sudden onset) and intensity of magnetic disturbances in the auroral zone (AL max) highly correlate with the PC growth rate. The growth phase reduces to a few minutes, if the PC index suddenly jumps above ~6–8 mV/m. The sharp development of Birkeland current wedge during expansion phase insignificantly influences the polar cap activity: the corresponding PC index increase does not exceed 10–20% of the PC value. It is concluded that the PC index may be considered as a convenient proxy of the solar wind energy input into the magnetosphere.  相似文献   

18.
Low frequency stochastic variations of the geomagnetic AE-index characterized by 1/fb-like power spectrum (where f is a frequency) are studied. Based on the analysis of experimental data we show that the Bz-component of IMF, velocity of solar wind plasma, and the coupling function of Akasofu are insufficient factors to explain these behaviors of the AE-index together with the 1/fb fluctuations of geomagnetic intensity. The effect of self-organized criticality (SOC) is proposed as an internal mechanism to generate 1/fb fluctuations in the magnetosphere. It is suggested that localized spatially current instabilities, developing in the magnetospheric tail at the initial substorm phase can be considered as SOC avalanches or dynamic clusters, superposition of which leads to the 1/fb fluctuations of macroscopic characteristics in the system. Using the sandpile model of SOC, we undertake numerical modeling of space-localized and global disturbances of magnetospheric current layer. Qualitative conformity between the disturbed dynamics of self-organized critical state of the model and the main phases of real magnetospheric substorm development is demonstrated. It is also shown that power spectrum of sandpile model fluctuations controlled by real solar wind parameters reproduces all distinctive spectral features of the AE fluctuations.  相似文献   

19.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

20.
The contribution of global magnetospheric oscillations to magnetic disturbance during magnetospheric storms is studied. The bases of magnetic data from the INTERMAGNET global network in combination with the interplanetary and intramagnetospheric measurements of the magnetic field and plasma and the sets of the Kp, Dst, and AE indices are used for this purpose. The most favorable conditions in the solar wind and magnetosphere for generation of global Pc5 have been revealed. The contribution of these oscillations to the variations in the magnetic disturbance level, characterized by the AE index, has been estimated. The findings confirm that magnetospheric MHD oscillations participate in the processes of energy income from the solar wind and energy dissipation in the magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号