首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of pearl-type (Pc 1) micropulsations recorded at the mid-latitude station Nagycenk (Hungary) during a half solar cycle showed a quite regular variation on this long time scale. Around solar activity maximum, the number of days with Pc 1 occurrence was rather low, while it began to increase during medium solar activity rising to a maximum around solar activity minimum. Pc 1 pulsations have been analyzed in relation to further parameters and on a shorter time scale, too. Based on data of 2 years with maximum Pc 1 occurrence (around solar activity minimum in 1985 and 1986), a seasonal variation was also found. Additionally, it was confirmed that pearl-type micropulsations might frequently occur, on and after days, with geomagnetic disturbances. At Nagycenk, the selected geomagnetic disturbances were generally associated with an increased ionospheric absorption of radio waves caused by enhanced ionization due to particle precipitation from the magnetosphere into the lower ionosphere. Whistler observations carried out at Panska Veš (a station in the Czech Republic) showed a significant whistler activity connected with these geomagnetic disturbances, however, no after-effect appeared in whistler activity. One of the main goals of the present study was to find a relationship between Pc 1 pulsations and whistlers. Results revealing an increased whistler activity associated with Pc 1 occurrences confirm our previous findings rather convincingly. The latter ones hinted at the probability that certain magnetospheric configurations, e.g. geomagnetic field line shells and whistler ducts are closely connected, as similar positions of the two structures were found within the magnetosphere when characteristics of Pc 3 pulsations and whistlers were analyzed.  相似文献   

2.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

3.
The variations in the daily average energy of geomagnetic pulsations and noise in the Pc3 (20–60 mHz) and Pc4 (10–19 mHz) frequency bands in the polar cap have been studied based on the data from P5 Antarctic station (corrected geomagnetic latitude ?87°) from November 1998 to November 1999. The daily average pulsation energy has been calculated using the method for detecting the wave packets, the spectral amplitude of which is higher than the threshold level, from the dynamic spectrum. A spectral analysis of the energy of pulsations and noise in the Pc3 and Pc4 bands, performed using the maximal entropy method, has revealed periodicities of 18 days in the local winter and 26, 13, and 7–9 days during the local summer. The simultaneous and coherent variations with periods of 26, 13, and 7–9 days in the solar wind velocity and IMF orientation indicate that the variations in the Pc3–4 wave energy in the polar cap at a sunlit ionosphere are mainly controlled by the parameters of the interplanetary medium. The variations in the Pc3–4 wave energy with a period of 18 days are observed only during the local winter and are supposedly related to the variations in the ionospheric conductivity modulated by planetary waves.  相似文献   

4.
This paper is devoted to the morphology of Pc1 geomagnetic pulsations (frequency range 0.2–5.0 Hz). This study is based on the series of continuous observations of Pc1 pulsations during more than three solar cycles (July 1957–December 1995). The main attention is given to the temporal characteristics of Pc1 activity, i.e. daily, seasonal and cyclic variations, and also the relationship of Pc1 activity with magnetic storms, sector structure of the interplanetary magnetic field and parameters of the solar wind. The results may be used in the studies of medicobiologic aspects of the problem of solar–terrestrial relations.  相似文献   

5.
An algorithm is developed for automated detection of the short-period Pc1 geomagnetic pulsations (frequency band f = 0.2–3 Hz) from the continuous time series of digital recording during 1998–2014 at the midlatitude Borok station. A digital catalog with the indication of time intervals of the presence and main morphological characteristics of Pc1 pulsations is created. Based on this catalog, the annual, seasonal, and diurnal dynamics of the midlatitude Pc1 pulsation activity is studied for 1998–2014. It is shown that the annual variation of the Pc1 occurrence has a maximum in 2005, i.e., at the end of the solar cycle decay phase, just as in the previous cycles. It is found that the minimum of the cases of Pc1 occurrence is observed in 2009, i.e., not at the maximum, just was the case in the previous cycles, but during the deep minimum of solar activity, which testifies to the untypical conditions in the magnetosphere during the unusually long minimum of the 23rd cycle. The seasonal variation of the Pc1 occurrence has a summer minimum when the series of Pc1 pulsations occur almost thrice as rarely as in winter. Besides, there are relatively small maxima at equinox. The diurnal behavior of Pc1 pulsations has the maxima in the morning and midnight sectors of the magnetosphere. By the superposed epoch analysis technique it is established that the maximal number of the cases of occurrence of Pc1 pulsations at the Borok observatory is observed on the fourth day after the global geomagnetic disturbances. The statistical distributions of pulsations amplitude and duration are obtained.  相似文献   

6.
The dynamics of the Pc5 and Pi1 pulsation characteristics and relativistic electron fluxes at geostationary orbit were comparatively analyzed for three nine-day intervals, including quiet periods and periods of geomagnetic storms. It was shown that relativistic electron fluxes increase considerably when the power of global Pc5 pulsations and the index of midlatitude irregular Pi1 pulsations increase simultaneously. The correlation between the characteristics of Pi1 and Pc5 geomagnetic pulsations and the level of the relativistic electron flux at geostationary orbit during the magnetic storm recovery phase were studied. It was shown that the correlation coefficient of the relativistic electron maximal fluxes during the magnetic storm recovery phase with the parameter of midlatitude Pi1 pulsations is slightly higher than such a correlation coefficient with the solar wind velocity.  相似文献   

7.
短周期地磁扰动的时空分布特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对2008—2010年隆尧地磁台站的地磁水平分量H和磁偏角D的秒数据进行了短时快速傅里叶变换,按连续型地磁脉动Pc2—Pc6所对应的频率范围对频谱进行了频段划分,在此基础上研究了各频段频谱总幅值即短周期地磁扰动的时空分布特征.在时间变化上,同一年中不同频段的幅值具有相似的变化规律,每年的幅变特性与该年对应的Vr指数的时间分布也具有一致的变化形态,仅仅在变化的幅度上存在差异.磁偏角D的幅值和VrD均呈现出显著的季节变化特征,而水平分量H的幅值和VrH却不显著.在空间变化上,各频段幅值均随地磁纬度的增加而增大,随地方时变化呈现出双峰双谷的特征.  相似文献   

8.
IMS data from Ottawa, Canada are analyzed to study the propagation characteristics of Pc1 pulsations. The majority of pulsations observed possessed periods of 1 second and lasted less than an hour. Shorter-period Pc1s are observed during the summer than during the winter. Periods of pulsations are also shorter during the noon hours than in the morning, and shorter during intervals of high magnetic activity. The diurnal variation of period at Ottawa is different from that at high-latitude stations. For Pc1s the calculated ratio of the spacing period to the pulse period at Ottawa is 86, in good agreement with values found for both higher- and lower-latitude stations. An IPDP (intervals of pulsations of diminishing periods) event occurred on April 19, 1977. The analysis supports the view that the energy dispersion of storm time protons, as well as the earthward movement of the instability region due to increasing magnetic activity, are involved in the production of such events. Earth Physics Branch Contribution No. 1087.  相似文献   

9.
The interrelation between sudden increases in the solar wind dynamic pressure, auroral proton flashes on the dayside equatorward of the oval, and geomagnetic pulsations in the Pc1 range is considered on the basis of simultaneous observations of the solar wind plasma parameters, proton auroras on the IMAGE satellite, and geomagnetic pulsations at the Lovozero Observatory. It is indicated that proton luminosity flashes were observed in 70% of cases equatorward of the auroral oval during sudden changes in the solar wind pressure. In this case, flashes of proton auroras were observed in 85% of cases during sudden changes in the pressure, which were related to interplanetary shocks. Increases in pressure during tangential discontinuities were accompanied by flashes of proton auroras only in 45% of cases. When the ground station was conjugate to the region occupied by a proton aurora flash, the appearance or intensification of existent pulsations in the Pc1 range was observed in 96% of cases. When the ground station was not conjugate to the region of a proton luminosity flash, the response in geomagnetic pulsations was observed in 32% of events. When a sudden change in the solar wind pressure was not accompanied by a proton luminosity flash, the response in pulsations in the Pc1 range was hardly observed.  相似文献   

10.
The analysis of simultaneous observations of 128 cases of high-latitude magnetic impulse events (MIEs), as well as geomagnetic pulsations in the Pc1–2 band observed in the area of the dayside cusp, was carried out. We investigated magnetograms from the Mirny Observatory, Antarctica. As a result of the examination, three groups of impulses were identified: (1) impulses accompanied by impulsive bursts of intervals of pulsations with rising periods (IPRPs)-type geomagnetic pulsations—16% of all events, (2) impulses accompanied by impulsive bursts of the Pi1B type (bursts of irregular magnetic pulsations)—48% of all events, and (3) impulses which were not accompanied by geomagnetic pulsations within a high-frequency band—36% of all events.It was found that the maximum frequency of occurrence of the impulses accompanied by impulsive bursts of the IPRP and Pi1B types was observed between 1200 and 1300 MLT. The events of the first two groups were observed predominantly when Bz>0. It was shown that the filling frequency of impulsive bursts that accompany the occurrence of impulses depends on the amplitude of the bursts. The maximum frequency of the occurrence of impulses which were not accompanied by impulsive bursts is between 1000 and 1100 MLT. The events of the third group were observed predominantly when Bz<0. In most cases, the occurrence of impulsive bursts coincided with the leading edge of the MIE.It is supposed that the MIE generation is stimulated by intensification of the plasma turbulence level at the dayside magnetopause in consequence of modulation instability development or reconnection processes.  相似文献   

11.
The diumal variations in the parameters of Pc3 (20–60 mHz) and Pc4 (10–19 mHz) pulsations at latitudes of the dayside cusp and polar cap have been studied using data of the magnetic stations of the trans-Antarctic meridional profile for the time interval from January to March 1997 (local summer) under weakly disturbed geomagnetic conditions (AE ≤ 250 nT). The technique for estimating pulsation parameters is based on the separation of the wave packets and noise. The diumal variations in the hourly average parameters of the wave packets in the Pc3 and Pc4 bands and noise in the Pc3-4 band (10–60 mHz)—the average number of wave packets, energy of wave packets and noise, and energy of a single wave packet—turned out to be different for the stations located deep in the polar cap (Φ ~ 87°) and at the latitudes of the dayside polar cusp (Φ ~ 70°) and auroral oval (Φ ~ 66°). Several sources of pulsations caused by different channels of wave energy penetration into the magnetosphere through the dayside cusp, dayside magnetopause, and dawn flank of the magnetotail apparently exist at high latitudes.  相似文献   

12.
1996年10月10日至11月29日在地磁北纬29.6°附近(L=1.3)的喀什、安西和北京,沿东西方向建立了横跨40.2°地理经度的地磁脉动观测台链.根据观测数据,分析研究了低纬Pc3脉动东西方向的传播特性和偏振特性.结论是上午以向西传播为主,下午以向东传播为主.白天偏振椭圆主轴方位方向以NW-SE为主,偏振方向以右旋为主.  相似文献   

13.
Geomagnetic pulsation in the Pc3-4 bands have been studied at high Antarctic latitudes during the local summer. The statistical relation between the occurrence probability of Pc3 and Pc4 pulsations and the solar wind (SW) and IMF parameters has been revealed by verifying the hypothesis that an indication is identical in two distributions. Different dependences of the occurrence probability of high-latitude Pc3 and Pc4 pulsations on the IMF value and orientation and SW density and velocity have been found out. It has been indicated that these dependences remain unchanged in the range of geomagnetic latitudes from 66° to 87°. It has been established that the Pc3 observation probability at small (20°–50°) IMF cone angles (θ = cos?1(B x/|B|)) is a factor of 1.5 higher than the average statistical probability and depends on the IMF value, which confirms the hypothesis that the Pc3 source is the turbulent region upstream of the magnetospheric quasiparallel low shock. On the contrary, the probability of occurrence of Pc4 weakly depends on the IMF cone angle and is maximal at θ ~ 0° and ~90°. With increasing negative B z values, the generation probability increases in the Pc4 band and tends to decrease in the Pc3 band. It has been found out for the first time that the dependence of the Pc4 occurrence probability on the IMF clock angle (? = tan?2 (B/B z) is identical in the regions of projections of closed and open field lines, whereas this dependence is different for Pc3. In the region of projections of closed field lines, the Pc3 occurrence probability increases at B z < 0 and B y > 0 (the condition under which the cusp shifts on the dawn side) and at B y < 0 and B z > 0 (which is typical of the formation of the low-latitude boundary plasma sheet). In the region of projections of open field lines such a probability increases at B y < 0 and B z < 0 (which results in the formation of the high-latitude boundary plasma sheet). Based on the discovered regularities, the conclusion has been made that the sources of generation of high-latitude Pc3 and Pc4 pulsations are different.  相似文献   

14.
Geomagnetism and Aeronomy - The article considers the scenario of the propagation of geomagnetic pulsations Pc1 from the region of their generation in the magnetosphere to a ground-based receiver,...  相似文献   

15.
Simultaneous whistler records of one station and geomagnetic pulsation (Pc3) records at three stations were compared. In a previous study correlation was found between occurrence and L value of propagation/excitation for the two phenomena. The recently investigated simultaneous records have shown that the correlation is better on longer time scales (days) than on shorter ones (minutes), but the L values of the propagation of whistlers/excitation of pulsations are correlated, i.e. if whistlers propagate in higher latitude ducts, pulsations have periods longer than in the case when whistlers propagate in lower latitude ducts.  相似文献   

16.
Geomagnetism and Aeronomy - The results of analysis an unusual event in the frequency range of Pc1 geomagnetic pulsations discovered at the end of solar cycle 24 are presented. This event was...  相似文献   

17.
中低纬地区地磁脉动的研究   总被引:1,自引:0,他引:1  
近年来我们对中低纬地区地磁脉动进行了大量的观测和研究。本文不仅介绍了观测仪器的设计、台网设置及数据处理方法。而且还简要地介绍了一些主要科研成果,如低纬Pc3脉动特点,低纬Pi2脉动偏振特性。南极地区的地磁脉动观测结果,以及在磁暴和太阳耀斑期间在低纬地区观测的地磁脉动。这对于进一步认识中低纬地区地磁脉动是十分有益的。  相似文献   

18.
本文利用2014年9月到2017年8月全球高时空分辨率TEC数据对北半球四个经度带电离层中纬槽的发生率和槽极小位置的变化进行了统计研究.基于Kp指数,我们引入了一个包含地磁活动变化历史效应的地磁指数(Kp 9)来分析中纬槽位置变化与地磁活动水平的关系.通过与其他地磁活动指数的对比,发现槽极小纬度与Kp 9指数的相关性最好.此外,本文重点分析了中纬槽发生率及槽极小纬度的经度差异、季节变化、地方时变化以及与地磁活动强度等的关系.结果表明,中纬槽的发生率与经度关系不大,主要受到季节、地方时与地磁活动的影响.午夜中纬槽发生率在夏季较低,其随地方时的变化则呈现出负偏态分布的特点,在后半夜发生率更高,而地磁活动增强对中纬槽的发生具有明显的促进作用.对于槽极小纬度,其在四个经度带的分布差异不大,但月变化各不相同,其中-120°经度带呈单峰分布,在夏季槽极小纬度更高,而0°经度带夏季槽极小纬度更低.槽极小的位置显著依赖于地磁活动、地方时以及季节变化.一般说来,地磁活动越强,中纬槽纬度越低.中纬槽位置随地方时的变化有明显的季节差异,冬季昏侧槽极小纬度随地方时变化较快,弱地磁活动条件下22∶00 LT前即达到最低纬度,其后位置几乎保持不变,而两分季槽极小纬度从昏侧至午夜都在降低,夏季槽极小纬度从昏侧连续下降至03∶00 LT左右.  相似文献   

19.
Using the data of Moscow station for 1975–1985, the seasonal features in the dependence of the spread-F probability P near midnight on the levels of solar and geomagnetic activity have been analyzed. It has been found that the P dependence on solar activity is most substantial in winter and fall, the P dependence on geomagnetic activity is maximal during equinoxes, and the P dependence on solar activity prevails in summer but is much weaker than in winter and fall. Based on the qualitative analysis of the known mechanisms of the midlatitude spread-F, the regression equation, which shows the P dependence on the solar activity level and thermospheric parameters (temperature and density) at a fixed average level of geomagnetic activity, has been obtained. In this equation the character of the seasonal changes in P is determined by the thermospheric parameters, the relative contribution of which depends on solar activity. The found dependence of the character of the P seasonal variations on the solar activity level has been interpreted based on this equation.  相似文献   

20.
While searching for electromagnetic effects of the earthquakes, impulse-type signals in the frequency range of 0–5 Hz preceding the earthquake or following it have been detected. The advance or delay time is from 0 to 5 min. The signals are observed as single or pair impulses. It is supposed that the signals make a significant impact on the state of the magnetosphere and ionosphere. As a result, a sharp change in the regime of Pc1 geomagnetic pulsations is possible. These effects are analyzed on the basis of observations of the geomagnetic pulsations at the Borok Geophysical Observatory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号