首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
《Astroparticle Physics》2009,30(6):366-372
We present results of a search for relativistic magnetic monopoles with the Baikal neutrino telescope NT200, using data taken between April 1998 and February 2003. No monopole candidates have been found. We set an upper limit 4.6 × 10−17 cm−2 s−1 sr−1 for the flux of monopoles with βm = 1. This is a factor of 20 below the Chudakov–Parker bound which is inferred from the very existence of large-scale galactic magnetic fields.  相似文献   

2.
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978–1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B−V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s−1 (FWHM). The mean wind mass loss rate is ∼6 × 10−7 M yr−1. The mean temperature is ∼6.5 × 105 K. The mean ultraviolet luminosity is ∼5 × 1033 erg s−1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.  相似文献   

3.
Among evolved massive stars likely in transition to the Wolf–Rayet phase, IRC + 10420 is probably one of the most enigmatic. It belongs to the category of yellow hypergiants and it is characterized by quite high mass loss episodes. Even though IRC + 10420 benefited of many observations in several wavelength domains, it has never been a target for an X-ray observatory. We report here on the very first dedicated observation of IRC + 10420 in X-rays, using the XMM-Newton satellite. Even though the target is not detected, we derive X-ray flux upper limits of the order of 1–3 × 10−14 erg cm−2 s−1 (between 0.3 and 10.0 keV), and we discuss the case of IRC + 10420 in the framework of emission models likely to be adequate for such an object. Using the Optical/UV Monitor on board XMM-Newton, we present the very first upper limits of the flux density of IRC + 10420 in the UV domain (between 1800 and 2250 Å and between 2050 and 2450 Å). Finally, we also report on the detection in this field of 10 X-ray and 7 UV point sources, and we briefly discuss their properties and potential counterparts at longer wavelengths.  相似文献   

4.
We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high Civ to Hi ratios, for the first absorber in system A, named A1. This value, together with high column density of Civ ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using cloudy), or a stratified cloud (which was modelled using titan), as well as the solar abundances. This model explained both the ionic column density of Civ and the high Civ to Hi ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010  1012 cm−3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.  相似文献   

5.
《Planetary and Space Science》2007,55(11):1494-1501
In this work, we calculate the neutral Na production rates on the Moon and Mercury, as due to the impacts of meteoroids having an impact probability on the surface that can influence the daily observations of the exosphere: the meteoroids radius range considered for the Moon and Mercury are 10−8–0.15 and 10−8–0.10 m, respectively. We also estimate the mass of meteoroids that has impacted the surfaces of the Moon and Mercury in the last 3.8 Gy (after the end of the Late Heavy Bombardment).The results of our model are that (i) the Na production rates are ∼(3–4.9)×104 and ∼(1.8–2.3)×106 atoms cm−2 s−1, for Moon and Mercury, respectively, and (ii) in the last 3.8 Gy, the mass of meteoroids that has impacted the whole surface of the Moon and Mercury has been 8.86×1018 and 2.66×1019 g, respectively.  相似文献   

6.
We describe the science motivation and development of a pair production telescope for medium-energy (∼5–200 MeV) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (∼0.6° at 70 MeV), continuum sensitivity comparable with the Fermi-LAT front detector (<3 × 10−6 MeV cm−2 s−1 at 70 MeV), and minimum detectable polarization less than 10% for a 10 mCrab source in 106 s.  相似文献   

7.
《New Astronomy》2007,12(6):507-521
The dynamics of the dwarf-spheroidal (dSph) galaxies in the gravitational field of the Galaxy is investigated with particular reference to their susceptibility to tidal break-up. Based on the observed paucity of the dSphs at small Galactocentric distances, we put forward the hypothesis that subsequent to the formation of the Milky Way and its satellites, those dSphs that had orbits with small perigalacticons were tidally disrupted, leaving behind a population that now has a relatively larger value of its average perigalacticon to apogalacticon ratio and consequently a larger value of its r.m.s. transverse to radial velocities ratio compared to their values at the time of formation of the dSphs. We analyze the implications of this hypothesis for the phase space distribution of the dSphs and that of the dark matter (DM) halo of the Galaxy within the context of a self-consistent model in which the functional form of the phase space distribution of DM particles follows the King model, i.e. the ‘lowered isothermal’ distribution and the potential of the Galaxy is determined self-consistently by including the gravitational cross-coupling between visible matter and DM particles. This analysis, coupled with virial arguments, yields an estimate of ≳270 km s−1 for the circular velocity of any test object at galactocentric distances of ∼100 kpc, the typical distances of the dSphs. The corresponding self-consistent values of the relevant DM halo model parameters, namely, the local (i.e., the solar neighbourhood) values of the DM density and velocity dispersion in the King model and its truncation radius, are estimated to be ∼0.3 GeV cm−3, >350 km s−1 and ≳150 kpc, respectively. Similar self-consistent studies with other possible forms of the DM distribution function will be useful in assessing the robustness of our estimates of the Galaxy’s DM halo parameters.  相似文献   

8.
We present numerical simulations of the axisymmetric accretion of a massive magnetized plasma torus on a rotating black hole. We use a realistic equation of state, which takes into account neutrino cooling and energy loss due to nucleus dissociations. The calculation are performed in the ideal relativistic MHD approximation using an upwind conservative scheme that is based on a linear Riemann solver and the constrained transport method to evolve the magnetic field. The gravitational attraction of the black hole is introduced via the Kerr metric in the Kerr–Schild coordinates. We simulate various magnetic field configurations and torus models, both optically thick and thin for neutrinos.We have found an effect of alternation of the magnetic field orientation in the ultrarelativistic jet formed as a result of the collapse. The calculations show evidence for heating of the wind surrounding the collapsar by the shock waves generated at the jet–wind border. It is shown that the neutrino cooling does not significantly change either the structure of the accretion flow or the total energy release of the system. The angular momentum of the accreting matter defines the time scale of the accretion. Due to the absence of the magnetic dynamo in our calculations, the initial strength and topology of the magnetic field determines the magnetization of the black hole, jet formation properties and the total energy yield. We estimate the total energy of accretion which transformed to jets as 1.3 × 1052 ergs which was sufficient to explain hypernova explosions like GRB 980425 or GRB 030329.  相似文献   

9.
This article presents a comparative analysis of solar activity data, Mt Wilson diameter data, Super-Kamiokande solar neutrino data, and nuclear decay data acquired at the Lomonosov Moscow State University (LMSU). We propose that salient periodicities in all of these datasets may be attributed to r-mode oscillations. Periodicities in the solar activity data and in Super-Kamiokande solar neutrino data may be attributed to r-mode oscillations in the known tachocline, with normalized radius in the range 0.66–0.74, where the sidereal rotation rate is in the range 13.7–14.6 year−1. We propose that periodicities in the Mt Wilson and LMSU data may be attributed to similar r-mode oscillations where the sidereal rotation rate is approximately 12.0 year−1, which we attribute to a hypothetical “inner” tachocline separating a slowly rotating core from the radiative zone. We also discuss the possible role of the Resonant Spin Flavor Precession (RSFP) process, which leads to estimates of the neutrino magnetic moment and of the magnetic field strength in or near the solar core.  相似文献   

10.
We present a new set of CCD photometric observations for the short period eclipsing binary 1SWASP J1743 (= V1067 Her). We have determined the available times of light minima and two new linear and quadratic ephemerides have been obtained. The photometric solutions for the system have been performed using Wilson and Devinney Code. The 3D and fill out configuration revealed that V1067 Her is an over contact W UMa binary with relatively low fill-out factor of about 16%.We investigated the period variation for the system. It showed a strong evidence of period changes by using the (O-C) residual diagram method and we have concluded long-term orbital period decrease rate dP/dt= −3.0 × 107 d/yr, corresponding to a time scale 8.6 × 105 yr. Such period decrease in the A-type W UMa systems is usually interpreted to be due to mass transfer from the more to the less massive component.  相似文献   

11.
A radial anisotropy in the flux of cosmic rays in heliosphere was theoretically predicted by Parker and others within the framework of the diffusion–convection mechanism. The solar wind is responsible for sweeping out the galactic cosmic rays, creating a radial density gradient within the heliosphere. This gradient coupled with the interplanetary magnetic field induces a flow of charged particles perpendicular to the ecliptic plane which was measured and correctly explained by Swinson, and is hereafter referred as ‘Swinson flow’. The large area GRAPES-3 tracking muon telescope offers a powerful probe to measure the Swinson flow and the underlying radial density gradient of the galactic cosmic rays at a relatively high rigidity of ∼100 GV. The GRAPES-3 data collected over a period of six years (2000–2005) were analyzed and the amplitude of the Swinson flow was estimated to be (0.0644 ± 0.0008)% of cosmic ray flux which was an ∼80σ effect. The phase of the maximum flow was at a sidereal time of (17.70 ± 0.05) h which was 18 min earlier than the expected value of 18 h. This small 18 min phase difference had a significance of ∼6σ indicating the inherent precision of the GRAPES-3 measurement. The radial density gradient of the galactic cosmic rays at a median rigidity of 77 GV was found to be 0.65% AU−1.  相似文献   

12.
A series of observations of the venusian hydrogen corona made by SPICAV on Venus Express are analyzed to estimate the amount of hydrogen in the exosphere of Venus. These observations were made between November 2006 and July 2007 at altitudes from 1000 km to 8000 km on the dayside. The Lyman-α brightness profiles derived are reproduced by the sum of a cold hydrogen population dominant below ~2000 km and a hot hydrogen population dominant above ~4000 km. The temperature (~300 K) and hydrogen density at 250 km (~105 cm?3) derived for the cold populations, near noon, are in good agreement with previous observations. Strong dawn–dusk exospheric asymmetry is observed from this set of observations, with a larger exobase density on the dawn side than on the dusk side, consistent with asymmetry previously observed in the venusian thermosphere, but with a lower dawn/dusk contrast. The hot hydrogen density derived is very sensitive to the sky background estimate, but is well constrained near 5000 km. The density of the hot population is reproduced by the exospheric model from Hodges (Hodges, R.R. [1999]. J. Geophys. Res. 104, 8463–8471) in which the hot population is produced by neutral–ions interactions in the thermosphere of Venus.  相似文献   

13.
《Planetary and Space Science》2007,55(12):1741-1756
The dynamics of Venus’ mesosphere (70–110 km) is characterized by the superposition of two different wind regimes: (1) Venus’ retrograde superrotation; (2) a sub-solar to anti-solar (SS–AS) flow pattern, driven by solar EUV heating on the sunlit hemisphere. Here, we report on new ground-based velocity measurements in the lower part of the mesosphere. We took advantage of two essentially symmetric Venus elongations in 2001 and 2002 to perform high-resolution Doppler spectroscopy (R=120,000) in 12C16O2 visible lines of the 5ν3 band and in a few solar Fraunhofer lines near 8700 Å. These measurements, mapped over several points on Venus’ illuminated hemisphere, probe the region of cloud tops. More precisely, the solar Fraunhofer lines sample levels a few kilometers below the UV features (i.e. near ∼67 km), while the CO2 lines probe an altitude higher by about 7 km. The wind field over Venus’ disk is retrieved with an rms uncertainty of 15–25 m s−1 on individual measurements. Kinematical fit to a one- or two-component circulation model indicates the dominance of the zonal retrograde flow with a mean equatorial velocity of ∼75 m s−1, exhibiting very strong day-to-day variations (±65 m s−1). Results are very consistent for the two kinds of lines, suggesting a negligible vertical wind shear over 67–74 km. The SS–AS flow is not detected in single-day observations, but combining the results from all data suggests that this component may invade the lower mesosphere with a ∼40 m s−1 velocity.  相似文献   

14.
We report sensitive Chandra X-ray non-detections of two unusual, luminous Iron Low-Ionization Broad Absorption Line Quasars (FeLoBALs). The observations do detect a non-BAL, wide-binary companion quasar to one of the FeLoBAL quasars. We combine X-ray-derived column density lower limits (assuming solar metallicity) with column densities measured from ultraviolet spectra and CLOUDY photoionization simulations to explore whether constant-density slabs at broad-line region densities can match the physical parameters of these two BAL outflows, and find that they cannot. In the “overlapping-trough” object SDSS J0300+0048, we measure the column density of the X-ray absorbing gas to be NH ? 1.8 × 1024 cm?2. From the presence of Fe ii UV78 absorption but lack of Fe ii UV195/UV196 absorption, we infer the density in that part of the absorbing region to be ne ? 106 cm?3. We do find that a slab of gas at that density might be able to explain this object’s absorption. In the Fe iii-dominant object SDSS J2215–0045, the X-ray absorbing column density of NH ? 3.4 × 1024 cm?2 is consistent with the Fe iii-derived NH ? 2 × 1022 cm?2 provided the ionization parameter is log U > 1.0 for both the ne = 1011 cm?3 and ne = 1012 cm?3 scenarios considered (such densities are required to produce Fe iii absorption without Fe iiabsorption). However, the velocity width of the absorption rules out its being concentrated in a single slab at these densities. Instead, this object’s spectrum can be explained by a low density, high ionization and high temperature disk wind that encounters and ablates higher density, lower ionization Fe iii-emitting clumps.  相似文献   

15.
《New Astronomy》2007,12(2):104-110
The double-station observation of a meteor is a kind of method for measuring the physical parameters of the meteor effectively. Four special groups of photographs about meteoric trains taken at two stations during Leonids 2001 have been collected. One representative group of them has been measured and analyzed in detail. The results reveal that this train has a screw-like structure and looks to have many spoke beams. The train moves forward in the form of left-hand screw. The horizontal drift velocity northward is 29.6 m s−1 and the vertical drift velocity upward is 12.3 m s−1. In addition, the material of the meteoric train has an outward expanding velocity up to about 79 m s−1. The possible explanation is that the persistent meteoric train is disturbed by the high altitude wind.  相似文献   

16.
《New Astronomy》2007,12(6):446-453
Using reliable trigonometric measurements, we find that the absolute magnitude of cataclysmic variables depends on the orbital period and de-reddened (J  H)0 and (H  K s)0 colours of 2MASS (Two Micron All Sky Survey) photometric system. The calibration equation covers the ranges 0.032d < Porb  0.454d, −0.08 < (J  H)0  1.54, −0.03 < (H  Ks)0  0.56 and 2.0 < MJ < 11.7; It is based on trigonometric parallaxes with relative errors of (σπ/π)  0.4. By using the period-luminosity-colours (PLCs) relation, we estimated the distances of cataclysmic variables with orbital periods and 2MASS observations and compared them with distances found from other methods. We suggest that the PLCs relation can be a useful statistical tool to estimate the distances of cataclysmic variables.  相似文献   

17.
Previous work by Scoffield, H.C., Yeoman, T.K., Wright, D.M., Milan, S.E., Wright, A.N., Strangeway, R.J. [2005. An investigation of the field aligned currents associated with a large scale ULF wave using data from CUTLASS and FAST. Ann. Geophys. 23, 487–498) investigated a large-scale ULF wave, occurring in the dusk sector (∼1900 MLT). The wave had a period of ∼800 s (corresponding to 1.2 mHz frequency), an azimuthal wave number of ∼7 and a full-width at half-maximum (FWHM) across the resonance of 350 km. IMAGE ground magnetometer and SuperDARN radar observations of the wave's spatial and temporal characteristics were used to parameterise a simple, two-dimensional field line resonance (FLR) model. The model-calculated field-aligned current (FAC) was compared with FACs derived from the FAST energetic particle spectra and magnetic field measurement. Here the authors use the same method to investigate the FAC structure of a second large-scale ULF wave, with a period of ∼450 s, occurring the dawn sector (∼0500 MLT) with an opposite sense background region 1–region 2 current system. This wave has a much larger longitudinal scale (m∼4.5) and a smaller latitude scale (FWHM=150 km). Unlike the dusk sector wave, which was dominated by upward FAC, FAST observations of the dawn sector wave show an interval of large-scale downward FAC of ∼1.5 μA m−2. Downgoing magnetospheric electrons with energies of a few keV were observed, which are associated with upward FACs of ∼1 μA m−2. For both wave studies, downward currents appear to be carried partially by upgoing electrons below the FAST energy detection threshold (5 eV), but also consist of a mixture of hotter downgoing magnetospheric electrons and upgoing ionospheric electrons of energies 30 eV–1 keV. Strong intervals of upward current show that small-scale structuring of scale ∼50 km has been imposed on the current carriers. In general, this study confirms the findings of Scoffield, H.C., Yeoman, T.K., Wright, D.M., Milan, S.E., Wright, A.N., Strangeway, R.J. [2005. An investigation of the FACs associated with a large-scale ULF wave using data from CUTLASS and FAST. Ann. Geophys. 23, 487–498).  相似文献   

18.
Spicules are an important very dynamical and rather cool structure extending between the solar surface and the corona. They are partly filling the space inside the chromosphere and they are surrounded by a transition thin layer. New space observations taken with the SOT of the Hinode mission shed some light on their still mysterious formation and dynamics. Here we restrict the analysis to the most radial and the most interesting polar spicules situated at the base of the fast solar wind of coronal holes.We consider a first important parameter of spicules as observed above the solar visible limb: their apparent diameter as a function of the height above the limb which determines their aspect ratio and leads to the discussion of their magnetic origin using the flux tube approximation. We found that indeed spicules show a whole range of diameters, including unresolved “interacting spicules” (I-S), depending of the definition chosen to characterize this ubiquitous dynamical phenomenon occurring into a low coronal surrounding. Superposition effects along the line of sight have to be taken into account in order to correctly measure individual spicules and look at I-S. We take advantage of the so-called mad-max operator to reduce these effects and improve the visibility of these hair-like features. An excellent time sequence of images obtained above a polar region with the Hinode SOT through the HCaII filter with a cadence of 8 s was selected for analysis. 1-D Fourier amplitude spectra (AS) made at different heights above the limb are shown for the first time. A definite signature in the 0.18–0.25 Mm range exists, corresponding to the occurrence of the newly discovered type II spicules and, even more impressively, large Fourier amplitudes are observed in the 0.3–1.2 Mm range of diameters and spacing, in rough agreement with what historical works were reporting. Additionally, some statistically significant behavior, based on AS computed for different heights above the limb, is discussed.“Time slice or xt diagrams” revealing the dynamical behavior of spicules are also analyzed. They show that most of spicules have multiple structures (similarly to the doublet spicules) and they show impressive transverse periodic fluctuations which were interpreted as upward kink or Alfven waves. Evidence of the helical motion in spicules is now well evidenced, the typical periods of the apparent oscillation being around 120 s. A fine analysis of the time-slice diagram as a function of the effective heights shows an interesting new feature near the 2 Mm height. We speculate on the interpretation of this feature as being a result of the dynamical specificities of the spicule helical motion as seen in these unprecedented high resolution HCaII line emission time series.  相似文献   

19.
《New Astronomy》2007,12(3):234-245
We present the Galactic model parameters for thin disc estimated by Sloan Digital Sky Survey (SDSS) data of 14 940 stars with apparent magnitudes 16 < g0  21 in six intermediate latitude fields in the first Galactic quadrant. Star/galaxy separation was performed by using the SDSS photometric pipeline and the isodensity contours in the (g  r)0  (r  i)0 two colour diagram. The separation of thin disc stars is carried out by the bimodal distribution of stars in the (g  r)0 histogram, and the absolute magnitudes were evaluated by a procedure presented in the literature (Bilir, S., Karaali, S., Tunçel, S. 2005. AN 326, 321). Exponential density law fits better to the derived density functions for the absolute magnitude intervals 8 < M(g)  9 and 11 < M(g)  12, whereas sech/sech2 laws are more appropriate for absolute magnitude intervals 9 < M(g)  10 and 10 < M(g)  11. We showed that the scaleheight and scalelength are Galactic longitude dependent. The average values and ranges of the scaleheight and the scalelength are 〈H = 220 pc (196  H  234 pc) and 〈H = 1900 pc (1561  h  2280 pc) respectively. This result would be useful to explain different numerical values claimed for those parameters obtained by different authors for the fields in different directions of the Galaxy.  相似文献   

20.
《New Astronomy》2007,12(6):435-440
A detailed analysis of emission lines of carbon-like silicon reveals that some ratios of n = 3  2 line intensities are sensitive to the electron density, ne. The ratio between two groups of 3d  2p transition lines of 55.246 Å and 55.346 Å provides a good diagnostic of ne because of the combined characteristic of sensitivity to electron density and relative insensitivity to temperature. From this ratio, a lower limit of the electron density of 0.6 × 108 cm−3 was set for Procyon, which is consistent with the values constrained by C V and Si X emission lines. Significant discrepancies were found between theoretical predictions and observations for the 3s  2p lines relative to 3d  2p lines in Procyon, recently measured using the Chandra high-resolution transmission grating instrument. The difference of more than a factor of 3, cannot be explained by uncertainties of atomic data. Ness and co-workers also suggested that the effect of opacity appeared not to be a major factor for the discrepancy. For the 3s  2p line at 61.611 Å, present work indicates that the large discrepancy may be from the contamination of a S VIII line at 61.645 Å. For lines at 61.702 and 61.846 Å, we suggest that the discrepancies may be attributed to contaminations by currently yet-unknown spectral lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号