首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold occurs in a number of different ore types in the Fennoscandian Shield ranging in age from Late Archean to Late Proterozoic. Until recently, the metal was exploited primarily as a byproduct in volcanogenic massive sulphide deposits but during the 1980s more gold mines have been opened than during any other episode in the mining history of northern Europe. The occurrence of gold in the Fennoscandian Shield is reviewed in the context of the major tectonostratigraphic units:
1.  In the Karelian Province, gold is hosted by greenstone belts of the Archean basement complex e.g. at Ilomantsi, eastern Finland. Greenstone belts of the Nordkalott Province, which are interpreted as part of an Early Proterozoic cover sequence, contain gold deposits associated with copper (Bidjovagge, Saattopora and Pahtohavare). Gold is also associated with cobalt in the metasomatically altered Early Proterozoic cover in north-eastern Finland (Meurastuksenaho and Juomasuo).
2.  In the Svecofennian Domain, the major gold deposits were generated during the emplacement of 1.92–1.87 Ga old accretional magmatism. These deposits occur in the northeastern part of the Svecofennian Domain, close to the Archean-Proterozoic boundary. They comprise two major types: (a) the porphyry-type and shear-zone gold hosted by tonalite at Tallberg, Laivakangas, Kopsa and Osikonmäki; (b) as a component of volcanogenic massive sulphide deposits (e.g. Holmtjärn, Boliden and Pyhäsalmi). Other types are: (c) gold-bearing quartz-alumina alteration zones formed during the 1.92–1.87 Ga magmatic period (Enåsen); (d) gold in massive sulphide and iron ore deposits in Bergslagen.
3.  Gold associated with 1.84–1.54 Ga granites has been reported from several sites in the Shield, including quartz veins and contact-metasomatic deposits. In addition, shear-zone-related gold deposits post-dating these granites have been identified in southeastern Sweden (Ädelfors).
4.  In the Sveconorwegian Domain, the gold deposits at Bleka, Eidsvoll, Glava and Hamas are associated with shear zones which developed penecontemporaneously with the intrusion of late (1.0–0.9 Ga) granites.
These metallogenic features, deposit modelling and economic properties of the known occurrences suggest that the potential for new gold discoveries is highest in Late Archean to Early Proterozoic greenstone belts and in Early Svecofennian tonalite plutons. The gold potential of the Sveconorwegian Domain is also worth further consideration.  相似文献   

2.
The Ljusdal Batholith (LjB) is a major component of the central Svecofennian Domain in Sweden. It is separated from the Bothnian Basin to the north by the 1.82–1.80 Ga crustal-scale Hassela Shear Zone (HSZ). The LjB has emplacement ages of 1.86–1.84 Ga, is mainly alkali-calcic, metaluminous, has Nd values between − 0.3 and + 1.2 and was formed in a magmatic arc setting.

During the Svecokarelian orogeny the LjB was affected by at least three fold episodes. Large-scale folded screens of migmatised metasedimentary rocks occur in the eastern part of the batholith, and to the north of the HSZ, there is a 50 km wide diatexite belt. The Transition Belt (TrB), consisting of 1.88–1.85 Ga granitoids, is located at the northwestern extension of this belt. A calc-alkaline and peraluminous composition combined with negative Nd values (− 1.7 to − 0.8) indicates a large proportion of metasediments in the source for these granitoids.

U–Pb SIMS data on zircon rims from migmatites and leucogranites to the north and east of LjB yield ages of 1.87–1.86 Ga, i.e. coeval with the granitoids of the LjB and the TrB. There is thus a close relationship between the LjB, the TrB and the migmatites in both space and time. Syn-migmatitic shearing along the HSZ indicates that a proto-HSZ was initiated already at c. 1.86 Ga, and the location of the proto-HSZ is inferred to be controlled by two older nuclei present in the lower parts of the crust. As crustal-scale shear zone systems are known to act as ascent pathways for sheet-like flow in active orogenies the TrB may represents accumulations of melts that were attracted and extracted by the proto-HSZ and intruded in a block that was not pervasively affected by subsequent shear along the HSZ.

An active continental margin setting for the LjB implies subduction at c. 1.86 Ga, and provides a heat source for both the migmatites and the TrB.

A later migmatisation at 1.82 Ga has been recorded to the south of the HSZ. Within the LjB the 1.82 Ga stromatic migmatites are folded by F2 folds, and the fabric is truncated by 1.80 Ga pegmatites.  相似文献   


3.
《Applied Geochemistry》1988,3(2):185-203
Chemical and isotopic analyses of water from drill holes and mines throughout the Fennoscandian Shield show that distinct layers of groundwater are present. An upper layer of fresh groundwater is underlain by several sharply differentiated saline layers, which may differ in salinity, relative abundance of solutes, and O, H, Sr and S isotope signature. Saline groundwater can be classified into four major groups based on geochemistry and presumed origin. Brackish and saline waters from 50–200 m depth in coastal areas around the Baltic Sea exhibit distinct marine chemical and isotopic fingerprints, modified by reactions with host rocks. These waters represent relict Holocene seawater. Inland, three types of saline groundwater are observed: an uppermost layer of brackish and saline water from 300–900 m depth; saline water and brines from 1000–2000 m depth; and superdeep brines which have been observed to a depth of at least 11 km in the drill hole on the Kola Peninsula, U.S.S.R. Electrical and seismic studies in shield areas suggest that such brines are commonly present at even greater depths. The salinity of all inland groundwaters is attributed predominantly to water-rock interaction. The main solutes are Cl, Ca, Na and Mg in varying proportions, depending on the host rock lithology. The abundance of dissolved gases increases with depth but varies from site to site. The main gas components are N2, CH4 (up to 87 vol.%) and locally H2. The δ13C value for methane is highly variable (−25 to −46%), and it is suggested that hydrothermal or metamorphic gases trapped within the surrounding rocks are the most obvious source of CH4. The uppermost saline water has meteoric oxygen-hydrogen isotopic compositions, whereas values from deeper water plot above the meteoric water line, indicating considerably longer mean residence time and effective low temperature equilibration with host rocks. Geochemical and isotopic results from some localities demonstrate that the upper saline water cannot have been formed through simple mixing between fresh water and deep brines but rather is of independent origin. The source of water itself has not been satisfactorily verified although superdeep brines at least may contain a significant proportion of relict Precambrian hydrothermal or metamorphic fluids.  相似文献   

4.
Summary The 100 m thick and 700 m long Nadezhda sill-like gabbronorite body, emplaced in the mafic-ultramafic Lukkulaisvaara layered intrusion, is associated with Cu-Ni-PGE mineralization that is mostly confined to mottled anorthosites developed from host gabbronorites and norites along the margin of the entire body. PGE and Au show distinct positive correlation with Cu, Ni and S suggesting that the noble metals are mainly controlled by sulphides. A mineralized layer about 1 m thick contains on average 0.74 wt.% S, 1.77 ppm Pt and 7.96 ppm Pd. Marginal location of PGE-rich sulphides and their absence in the Nadezhda body suggest that the mineralizing process must have been gravity-independent and not related to the bulk saturation of the magma in sulphides. We propose that the Nadezhda Cu-Ni-PGE mineralization formed as a result of local sulphide saturation that was achieved in situ at the margins as a result of the flux of ore-bearing fluids from the interior of the body towards its margins. The sulphides became PGE-rich due to interaction with a large volume of ore-bearing fluids that were introduced into the Nadezhda body during a juvenile stage of its development as a conduit through which a large volume of magma has passed on its way to the main chamber. Authors’ addresses: R. M. Latypov and S. Yu. Chistyakova, Kola Science Centre, Geological Institute, Fersman Str. 16, 184200 Apatity, Russia; Present address: Department of Geosciences, University of Oulu, P. O. Box 3000, Oulu, FIN-90014, Finland; T. T. Alapieti, Department of Geosciences, University of Oulu, P. O. Box 3000, Oulu, FIN-90014, Finland  相似文献   

5.
6.
Summary Early Proterozoic layered intrusions, about 2440 Ma in age, are widespread over a large area of the northeastern Fennoscandian Shield in Finland, Sweden and the Soviet Union. Only one intrusion, the Kukkola intrusion, is encountered in Sweden whereas in Finland, their number exceeds twenty. These are concentrated principally in two areas, the dicontinuous Tornio-Närdnkävaara intrusion belt which crosses northern Finland and the Koitelainen intrusion with its satellites located in central Finnish Lapland. The intrusions in the Soviet Union are concentrated in three areas: (i) on the Kola Peninsula, (ii) in the Paanajärvi area close to the Finnish border and (iii) northeast of Lake Onega.Examples of all the ore types characteristic of layered intrusions have been found in these intrusions. Chromitite layers are encountered in the Kukkola/Tornio, Kemi, Penikat, Koitelainen and Burakovsky intrusions, but only one, the Kemi chromitite, has so far been mined. The Portimo, Koillismaa, Monchegorsk and Fedorova intrusions are characterized by PGE-bearing Cu-Ni-deposits in their marginal series. Mineralized zones enriched in PGE are also encountered in the layered series. Those in the Penikat intrusion and in the Portimo intrusions are the most remarkable and the best known to date. Vanadium-bearing Fe-Ti-oxide layers are encountered in several intrusions, but only one, the Mustavaara deposit, is presently being exploited.Two types of parental magma have tentatively been proposed for these intrusions. The first type is represented by a magma which was relatively rich in magnesium and chromium and was as a whole boninitic in composition, whereas the plagioclase-rich intrusions and megacyclic units are interpreted as having crystallized from a magma which was greatly depleted in these elements, especially Cr, and had melted crustal material incorporated in it.The emplacement of the early Proterozoic layered intrusions in Fennoscandia was part of the world-wide igneous activity indicated by other layered intrusions and mafic dyke swarms of similar age in other ancient cratons, i.e. the Jimberlana intrusion in Australia, the Great Dyke in Zimbabwe, the Scouric picrite suite in Scotland, the Hearst-Matachewan dyke swarm, Copper Cliff Formation and East Bull Lake intrusion in Ontario, Canada, and the Vestfold Hills and Napier Complex dyke swarms in Antarctica. This almost contemporaneous occurrence in different parts of the world would suggest a more intimate relationship between the Fennoscandian Shield, northwest Scotland, Canadian Shield, Yilgarn Block, Zimbabwe Craton and East Antarctic Shield at the beginning of the Proterozoic than at present.
Früh-Proterozoische geschichtete Intrusionen im nordöstlichen Teil des Fennoskandischen Schildes
Zusammenfassung Im Nordost-Teil des Fennoskandischen Schildes in Finnland, Schweden und der Sowjetunion kommen fast vierzig frühproterozoische geschichtete Intrusionen, die ungefähr 2440 Mio J. alt sind, vor. Nur eine davon, die Kukkola Intrusion, liegt in Schweden, während in Finnland mehr als zwanzig Intrusionen vorkommen. Diese sind hauptsächlich in zwei Gebieten konzentriert, nämlich in dem nicht-zusammenhängenden Tornio-Näränkävaara Gürtel, der das nördliche Finnland durchzieht, und die Koitelainen-Intrusion mit ihren Satelliten im zentralen Finnischen Lapland. Die Intrusionen in der Sowjetunion sind in drei Gebieten konzentriert: (i) auf der Kola Halbinsel (ii) im Paanajärvi Gebiet nahe der Finnischen Grenze und (iii) östlich vom Onega-See.Beispiele aller für geschichtete Intrusionen charakteristischen Erztypen kommen vor. Chromititlagen sind in den Intrusionen von Kukkola/Tornio, Kemi, Penikat, Koitelainen und Burakovsky zu finden, aber nur eine davon, der Kemi Chromitit, ist bisher in Abbau genommen worden.Die Portimo-, Koillismaa-, Monchegorsk- und Fedorova-Intrusionen werden durch PGE-führende Kupfer-Nickel-Lagerstätten in ihren randlichen Bereichen charakterisiert. Mineralisierte Zonen die an PGE angereichert sind kommen auch in den geschich teten Serien vor. Die bemerkenswertesten sind die PGE-Vererzungen der Penikat- und der Portimo-Intrusionen. Vanadium-führende Fe-Ti-Oxidlagen kommen in verschiedenen Intrusionen vor, aber nur eine davon, die Mustavaara-Lagerstätte, ist bisher abgebaut worden.Diese Intrusionen werden auf zwei verschiedene Magmentypen zurückgeführt. Ersteres ist ein Magma das relativ reich an Magnesium und Chrom war und eine boninitische Zusammensetzung hatte, während die Plagioklas-reichen Intrusionen, und die megazyklischen Einheiten auf ein Magma das an diesen Elementen (besonders Cr) verarmt war, und das Krustenmaterial aufgeschmolzen hat, zurückgehen.Die Platznahme der frühproterozoischen geschichteten Intrusionen in Fennoskandien stellt einen Teil weltweiter magmatischer Aktivität dar, die durch andere geschichtete Intrusionen und mafische Gänge von fast identischem Alter in anderen alten Kratonen repräsentiert wird. Hier ist die Jimberlana-Intrusion in Australien, der Great Dyke in Zimbabwe, die Pikrit-Suite von Scourie in Schottland, die Gänge von Hearst-Matachewan, die Copper Cliff Formation und die East Bull Lake Intrusion in Ontario, Kanada ebenso wie die Gangsysteme der Vesthold Hills und des Napier Komplexes in Antarctica zu nennen. Diese fast gleichaltrigen Vorkommen in verschiedenen Teilen der Welt weisen auf eine engere Beziehung zwischen dem Fennoskandischen Schild, Nordwest-Schottland, dem Kanadischen Schild, dem Yilgarn Block, dem Zimbabwe-Craton und dem Ostantarktischen Schild zum Beginn des Proterozoikums hin.


With 7 Figures  相似文献   

7.
Micro-organisms must be included in any hydrogeochemical modelling efforts in the ongoing Swedish programme to characterize potential sites for the geological disposal of spent nuclear fuel. This paper presents the development and testing of several methods for estimating the total numbers of micro-organism groups and amounts of their biomass in groundwater, their diversity, and the rates of microbial processes. The enumeration and cultivation methods were tested and evaluated on groundwater from boreholes at 450 m depth in the Äspö Hard Rock Laboratory (HRL), Sweden, and from two potential sites for a final repository of spent nuclear fuel, Forsmark and Laxemar. The reproducibility of the methods between parallel samples and over time was investigated and found to be excellent. Nitrate-, iron-, manganese- and sulphate-reducing bacteria and acetogens and methanogens were found in numbers up to approximately 87,000 cells L−1 groundwater from the studied sites. A methodology that analysed microbial process rates was developed and tested under open and closed controlled in situ conditions in a circulation system situated 447 m underground in the MICROBE laboratory at the Äspö HRL. The sulphide and acetate production rates were determined to be 0.08 and 0.14 mg L−1 day−1, respectively. The numbers of sulphide- and acetate-producing micro-organisms increased concomitantly in the analysed circulating groundwater. Flushing the sampled circulation aquifer created an artefact, as it lowered the sulphide concentration. Microbial and inorganic processes involved in sulphur transformations are summarized in a conceptual model, based on the observations and results presented here. The model outlines how dissolved sulphide may react with Fe(III) and Fe(II) to form solid phases of iron sulphide and pyrite. Sulphide will, consequently, continuously be removed from the aqeous phase via these reactions, at a rate approximately equalling the rate of production by microbial sulphate reduction.  相似文献   

8.
9.
In this study, we report the results of an investigation of lithological interpretation of the crust in the central Fennoscandian Shield (in Finland) using seismic wide-angle velocity models and laboratory measurements on P- and S-wave velocities of different rock types. The velocities adopted from wide-angle velocity models were compared with laboratory velocities of different rock types corrected for the crustal PT conditions in the study area. The wide-angle velocity models indicate that the P-wave velocity does not only increase step-wise at boundaries of major crustal layers, but there is also gradual increase of velocity within the layers. On the other hand, the laboratory measurements of velocities indicate that no single rock type is able to provide the gradual downward increasing trends. Thus, there must be gradual vertical changes in rock composition. The downward increase of velocities indicates that the composition of the crust becomes gradually more mafic with increasing depth. We have calculated vertical velocity profiles for a range of possible crustal lithological compositions. The Finnish crustal velocity profiles require a more mafic composition than an average global continental model would suggest. For instance, on the SVEKA'81 transect, the calculated models suggest that the crustal velocity profiles can be simulated with rock type mixtures where the upper crust consists of felsic gneisses and granitic–granodioritic rocks with a minor contribution of amphibolite and diabase. In the middle crust, the amphibolite proportion increases. The lower crust consists of tonalitic gneiss, mafic garnet granulite, hornblendite, pyroxenite and minor mafic eclogite. Assuming that these rock types are present in sufficiently extensive and thick layers, they would also have sufficiently high acoustic reflection coefficients for generating the generally well-developed reflectivity in the crust in the central part of the shield. Density profiles calculated from the lithological models suggest that there is practically no density contrast at Moho in areas of the high-velocity lower crust. Comparison of reflectors from FIRE-1 and FIRE-3 transects and the velocity model from SVEKA'81 wide-angle transect indicated that the reflectors correlate with velocity layering, but the three-dimensional structures of the crust complicate such comparisons.  相似文献   

10.
A brief geological and petrographic characterization of the Early Precambrian dike complexes of the Kola region is given along with data on new estimates of dike age and analysis of their distribution over the entire Fennoscandian Shield. The emplacement of dikes in the Archean core of the shield continued after consolidation of the sialic crust 2.74?C1.76 Ga ago. After the Svecofennian Orogeny, dikes continued to form in the west in the area of newly formed crust, while the amagmatic period began in the Archean domain. The intense formation of dikes in the Svecofennian domain lasted approximately for 1 Ga (1.8?C0.84 Ga). The younger igneous rocks in the crustal domains of different age are less abundant and localized at their margins. A similar distribution of dikes is characteristic of other shields in different continents. This implies that the formation of the sialic crust in the shields is not completed by its consolidation and formation of the craton. For 1 Ga after completion of this process, the crust is underplated by mantle-derived magmas. This process is reflected at the Earth??s surface in the development of mantle-derived mafic and anorogenic granitoid magmatism. The process of crust formation is ended as the subcratonic lithosphere cools and the amagmatic period of the craton history is started. Beginning from this moment, the manifestations of cratonic magmatism were related either to the superposed tectonomagmatic reactivation of the cold craton under the effect of crust formation in the adjacent mobile belts or to the ascent of mantle plumes.  相似文献   

11.
12.
In the Fennoscandian Shield (Baltica) there are seven major rapakivi plutons and fifteen minor ones ranging in age from ca 1.66 to 1.50 Ga. These plutons are distributed in a broad WNW zone and if the most eastern pluton is excluded there is a westward trend of decreasing age of the intrusions. A palaeomagnetic study has been performed on 4 minor plutons (Rödö, Mårdsjö, Norsjö and Mullnäset) and associated dykes in central Sweden. The results were combined with palaeomagnetic data from other rapakivi complexes in Fennoscandia in order to test if a stationary hot spot may be the origin of these anorogenic intrusions. Plotting the pole positions of this study together with poles of other complexes, poles calculated from rapakivi rocks and related dykes in Finland are located at somewhat lower latitudes and more eastern longitudes than poles of corresponding rocks in Sweden, probably reflecting an APW related to the general age differences between the plutons. The palaeolatitudes for the Fennoscandian Shield at the time of the rapakivi intrusions are restricted to a latitudinal range between ca 16° south and 27° north and there is a weak trend of increasing palaeolatitude with decreasing age of the rocks. A trend of gradually changing palaeolatitudinal positions has also been observed for the intrusion of Proterozoic anorthosite-rapakivi plutons in the Ukranian Shield. Such differences in palaeolatitudes is not expected in case of a single stationary hot spot being the source of the rapakivi intrusions, as the rock then should carry a magnetization reflecting the same latitudinal position.  相似文献   

13.
Paleomagnetic study of dykes and intrusions remanent in the central part of the Kola Peninsula has been carried out; the Devonian age of these objects has been confirmed by isotopic-geochronological studies. The component analysis of the magnetization vector in the samples has shown that there are two magnetization components in most samples. The paleomagnetic pole corresponding to the direction of a more stable component is located in the close vicinity of the Middle Devonian segment of the apparent polar wander path (APWP) for the East European Craton, so this enables us to estimate its age to be as old as the Devonian. The second magnetization component was found in Devonian dykes of both northern and southern parts of the Kola Peninsula; the paleomagnetic pole corresponding to this component is located close to the Mesozoic (Early Jurassic) part of the APWP for the East European Craton. It is suggested that the extensive remagnetization of Devonian intrusions in the Kola Peninsula was caused by the thermal effect of the Barents-Amerasian superplume and by the appearance of an extensive area with trap magmatism within the modern Arctic Basin region. Discovery of a significant thermal event that covered the Fennoscandian northeast allows us to explain the geochronological problem concerning the Mesozoic ages of particular singular zircon grains from Precambrian rocks of the shield derived via the SHRIMP method.  相似文献   

14.
Summary The 100 m thick and 700 m long Nadezhda body in the Lukkulaisvaara layered intrusion exhibits concentric zonation with an inward progression from a 0.5 to 1.0 m thick marginal layer of medium- to coarse-grained norites and gabbronorites that abruptly give way to fine-grained oikocrystic gabbronorites composing the rest of the body. The concentric zonation is additionally emphasized by well-developed alignment of plagioclase laths and orthopyroxene oikocrysts parallel to the outer contacts of the body, pegmatitic gabbronorite segregations in the centre of the body and slight inward decrease in whole-rock Mg# and Cr and increase in incompatible elements. The body has distinctly higher whole-rock Mg# and lower concentrations of all incompatible components than its host rocks. It is enveloped by highly altered marginal anorthosites belonging to host norites and gabbronorites. We interpret the Nadezhda body as a portion of high Mg# (∼75%) and incompatible element-poor (∼20 ppm, Zr; ∼10 ppm, total REE; ∼0.20 wt%, TiO2) magma that replenished the evolving chamber and became trapped within the cumulate pile. Recrystallization of adjacent rocks by volatiles exsolved from the magma upon emplacement resulted in formation of marginal anorthosites. Upon cooling the magma started to crystallize medium- to coarse-grained norites along its margins, but subsequent decompression and loss of volatiles led to rapid crystallization of magma into fine-grained oikocrystic gabbronorites. Solidification of the remaining residual liquid gave rise to pegmatitic gabbronorite segregations. Supplementary material to this paper is available in electronic form at Tables 3–6 available as electronic supplementary material Authors’ addresses: R. M. Latypov, S. Yu. Chistyakova, Kola Science Centre, Geological Institute, Fersman Str. 16, 184200 Apatity, Russia; Present address: Department of Geosciences, University of Oulu, P.O. Box 3000, Oulu, FIN-90014, Finland; T. T. Alapieti, Department of Geosciences, University of Oulu, P.O. Box 3000, Oulu, FIN-90014, Finland  相似文献   

15.
ABSTRACT

We have identified two contrasting styles of Paleoproterozoic metamorphism in the northern part of the Fennoscandian Shield. The Karelia and Lapland-Kola Provinces, comprising Archean and overlying Paleoproterozoic supracrustal rocks, show a typical medium pressure Barrovian-style metamorphism with commonly found kyanite-bearing mineral assemblages and ITD (isothermal decompression) PT paths. In the juxtaposed Svecofennia Province metamorphism represents low pressure-high temperature Buchan style with garnet-cordierite migmatites and intercalated andalusite-cordierite and andalusite-staurolite schists and sillimanite-muscovite gneisses. The retrograde PT paths show only a moderate uplift during cooling.

U-Pb age determinations on monazite were made using the LA-ICP-MS from more than 80 samples from metasedimentary rocks. The sampling covered most parts of the Paleoproterozoic bedrock in Finland. The analyses reveal three peaks at c. 1.91 Ga, 1.86–1.88 Ga and at 1.79–1.81 Ga. The oldest, c. 1.91 Ga monazites are mostly found in the Lapland-Kola Province which is located in the northernmost Finland. In the Karelia Province where the Paleoproterozoic is underlain by Archean bedrock monazite yielded ages of 1.76?1.81 Ga with only a few older exceptions in samples showing a spread of 207Pb/206Pb ages from c. 1.92–1.81 Ga. The Karelia Province underwent tectonic thickening, where monazite ages of around 1.80 Ga mostly represent exhumation near the temperature maximum.

In the Svecofennia Province monazite ages vary from c. 1.89 to 1.78 Ga. In the Western Finland Subprovince the monazite ages in high-grade migmatites are mostly 1.86?1.88 Ga but within the older migmatite areas there are lower grade zones where monazite yields ages of c. 1.80 Ga. Some samples also show a spread of 207Pb/206Pb ages from 1.89?1.86 Ga to c. 1.78 Ga. In the Southern Finland Subprovince most ages are either 1.80?1.78 Ga, especially in the andalusite grade schists, or the sample shows a spread of 207Pb/206Pb ages from c. 1.88 to 1.78 Ga. Only in the eastern part of the Southern Finland Subprovince there are rocks which yield merely 1.86?1.89 Ga ages. Low pressure-high temperature metamorphism and lack of high or medium P/T rocks in the Svecofennia Province refers rather to accretionary than collisional processes.  相似文献   

16.
Paleoproterozoic mafic igneous rocks (2450–1970 Ma) are exposed in the form of layered intrusions, dykes, and volcanic rocks in the Karelian, Kola and Murmansk provinces and in the form of dykes and small intrusions in the Belomorian Province, Eastern Fennoscandian Shield. The age and sequence of mafic dyke emplacement during the Paleoproterozoic are very similar in these regions. Further comparisons of geochemical characteristics of mafic dyke swarms in the Belomorian Province and neighboring cratons show considerable similarities.  相似文献   

17.
18.
Slabunov  A. I.  Shchipansky  A. A.  Stepanov  V. S.  Babarina  I. I. 《Geotectonics》2019,53(2):205-230
Geotectonics - The results of detailed geological mapping, coupled with the isotope-geochemical study of a metamorphosed mafic-ultramafic complex known as the Central Belomorian Belt located in the...  相似文献   

19.
K. Moisio  P. Kaikkonen  F. Beekman   《Tectonophysics》2000,320(3-4):175-194
Numerical modelling was applied to study the present-day state of stress and deformation under different tectonic loading conditions at the seismic BALTIC–SKJ profile in south-eastern Finland and in Estonia. The finite element method was used to solve the numerical problem. The two-dimensional model was constructed using the results from both seismic and thermal studies along the profile. The model is 700 km long and 200 km deep, and is roughly divided into an inhomogeneous, laterally layered crust and a homogeneous mantle lithosphere. Both the linear elastic and non-linear elasto-plastic rheologies were used. Elasto-plasticity was achieved by calculating a rheological strength as a function of depth along the profile. Different tectonic load cases were analysed with displacement, force and pressure type boundary conditions. Also, the effect of different strain rates was investigated. The results suggest that even with relatively low compressive stress levels the lower crust deforms in a plastic manner for a wet crustal rheology. When applying a dry crustal rheology, plastic yielding is attained only with much higher stress fields.  相似文献   

20.
This study presents new data on the geochemical and Sm-Nd isotope compositions, as well as the U-Pb age and geodynamic nature, of the Neoarchean basalt-andesite-dacite (BAD) association from the Kolmozero-Voron’ya greenstone belt. As it was first demonstrated by the example of the Neoarchean greenstone belt, the formation of BAD associations within a single Neoarchean greenstone structure may be explained by the long-lasting evolution of separate mantle or crustal sources not related to subduction processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号