首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Om diagnostic can differentiate between different models of dark energy without the accurate current value of matter density. We apply this geometric diagnostic to dilaton dark energy (DDE) model and differentiate DDE model from LCDM. We also investigate the influence of coupled parameter α on the evolutive behavior of Om with respect to redshift z. According to the numerical result of Om, we get the current value of equation of state ω σ0=−0.952 which fits the WMAP5+BAO+SN very well.  相似文献   

2.
Based on a new geometric diagnostic method-Om, we consider a new independent-model parametrization . When we work in potential W σ [1+(σA)2]e (−), we investigate the evolutional behavior of Om with respect to red-shift z and the influence of coupling parameter α on the trajectory of Om with respect to z. We get that phantom model of Dilaton dark energy can avoid the future singularity “Big Rip”. The numerical results give current value of EOS which fits the latest observational data WMAP5+BAO+SNe very well.  相似文献   

3.
The cosmographic expansion history of the universe is investigated by using the 557 type Ia supernovae from the Union2 Compilation set along with the current estimates involving the product of the CMB acoustic scale ?A and the BAO peak at two different redshifts. Using a well-behaved parameterization for the deceleration parameter, q(z) = q0 + q1z/(1 + z), we estimate the accelerating redshift zacc = −q0/(q0 + q1) (at which the universe switches from deceleration to acceleration) and investigate the influence of a non-vanishing spatial curvature on these estimates. We also use the asymptotic value of q(z) at high-z to place more restrictive bounds on the model parameters q0 and q1, which results in a more precise determination of the epoch of cosmic acceleration.  相似文献   

4.
5.
Under the assumption that the photospheric quiet Sun magnetic field is turbulent, the cancellation function has previously been used to estimate the true, resolution-independent mean, unsigned vertical flux 〈|B z |〉true. We show that the presence of network elements, noise, and seeing complicate the measurement of accurate cancellation functions and their power law exponents κ. Failure to exclude network elements previously led to estimates that were too low for both the cancellation exponent κ and 〈|B z |〉true. However, both κ and 〈|B z |〉true are overestimated due to noise in magnetograms. While no conclusive value can be derived with data from current instruments, our Hinode/SP results of κ?0.38 and 〈|B z |〉true?270 gauss can be taken as upper bounds.  相似文献   

6.
We investigate the evolution of a spherically symmetric dust-like cloud at the linear and nonlinear stages in the framework of ΛCDM models of the universe with nonzero three-space curvature. The evolution conditions are expressed for any redshift z ≥ 0 in terms of the amplitude δmin of the fluctuation which stops to expand at infinite time, the amplitude δ ta of the fluctuation which stops to expand at a given moment, and the amplitude δ c of the fluctuation which collapses at a given moment. These amplitudes are calculated as functions of cosmological model parameters and redshift. The ratios D nl r /D l of nonlinear amplitude estimates to linear ones and the typical fluctuation scales k nl /k are approximated by a function of the linear amplitude δ z .  相似文献   

7.
By the test particle method, we have investigated the kinematic characteristics of the electrons in the reconnecting current sheet with a guiding magnetic field Bz after they are accelerated by the supper-Dreicer electric field Ez. Firstly, the influence of the guiding magnetic field Bz on the particle acceleration is discussed under the assumption that Bz is constant in magnitude but different in orientation with respect to the electric field. In this case, the variation of the Bz direction directly leads to the variation of electron trajectories and makes electrons leave the current sheet along different paths. If Bz is parallel to Ez, the pitch angles of the accelerated electrons are close to 180°. If Bz is anti-parallel to Ez, the pitch angles of the accelerated electrons are close to 0°. The orientation of the guiding magnetic field just makes the electric field accelerate selectively the electrons in different regions, but does not change the energy distribution of electrons, and the finally derived energy spectrum is the common power-law spectrum E. In typical coronal conditions, γ is about 2.9. The further study indicates that the magnitude of γ depends on the strengths of the guiding magnetic field and reconnecting electric field, as well as the scale of the current sheet. Then, the kinematic characteristics of the accelerated electrons in the current sheet with multiple X-points and O-points are also studied. The result indicates that the existences of the X-points and O-points have the particles constrained in the accelerating region to obtain the maximum acceleration, and the final energy spectrum has the characteristics of multi-power law spectra.  相似文献   

8.
A solution to the coincidence and Big Rip problems on the bases of an anisotropic space-time is proposed. To do so, we study the interaction between viscous dark energy and dark matter in the scope of the Bianchi type-I Universe. We parameterize the viscosity and the interaction between the two fluids by constants ζ 0 and σ respectively. A detailed investigation on the cosmological implications of this parametrization has been made. We have also performed a geometrical diagnostic by using the statefinder pairs {s,r} and {q,r} in order to differentiate between different dark energy models. Moreover, we fit the coupling parameter σ as well as the Hubble’s parameter H 0 of our model by minimizing the χ 2 through the age differential method, involving a direct measurement of H.  相似文献   

9.
The paper consists of some exact solutions for a homogeneous Bianchi type VI0 universe. The material distribution is taken to be a magnetized bulk viscous fluid in presence of massive cosmological string. We assume that current is flowing along x-direction. Therefore, the magnetic field is in yz-plane. For deterministic model of the universe, we assume that shear (σ) is proportional to the expansion (θ) and ζ θ=constant=ξ where ζ the coefficient of bulk viscosity and θ the expansion in the model. The physical and kinematical parameters of the models thus formed are discussed.  相似文献   

10.
We present the results of our new spectropolarimetric observations of FKCom aimed to measure the longitudinal component B z of its magnetic field. The most interesting interpretation of our results suggests that the B z value has significantly decreased compared to the 2008 observations of this star. Such a decrease of the longitudinal component of the magnetic field can be similar to the secular variations of B z registered earlier for another chromospherically active star II Peg. On the other hand, assuming the existence of B z variations with the rotation phase, we suggest that the variations of the phase curve B z from 2008 to 2012 originated because of the strengthening of the negative polarity spot, its domination, and as a result-a generally more symmetric distribution of magnetic regions.  相似文献   

11.
The current sheet in Earth’s magnetotail often flaps, and the flapping waves could be induced propagating towards the dawn and dusk flanks, which could make the current sheet dynamic. To explore the dynamic characteristics of current sheet associated with the flapping motion holistically and provide reasonable physical interpretations, detailed direct calculation and analysis have been applied to one approximate analytic model of magnetic field in the flapping current sheet. The main results from the model demonstrate: (1) the magnetic fluctuation amplitude is attenuated from the center of current sheet to the lobe regions; The larger wave amplitude would induce the larger magnetic amplitude; (2) the curvature of magnetic field lines (MFLs), with maximum at the center of current sheet, is only dependent on the displacement Z along the south-north direction from the center of current sheet, regardless of the tilt of current sheet; (3) the half-thickness of neutral sheet, h, the minimum curvature radius of MFLs, Rcmin, and the tilt angle of current sheet, δ, satisfies h=Rcmin cos δ; (4) the gradient of magnetic strength forms a double-peak profile, and the peak value would be more intense if the local current sheet is more tilted; (5) current density j and its jy, jz components reach the extremum at the center of CS. j and jz would be more intense if the local current sheet is more tilted, but it is not the case for jy; and (6) the field-aligned component of current density mainly appears in the neutral sheet, and the sign of it would change alternatively as the flapping waves passing by. To check the validity of the model, one simulation on the virtual measurements has been made, and the results are in well consistence with actual observations of Cluster.  相似文献   

12.
We developed a generic formalism to estimate the event rate and the redshift distribution of Fast Radio Bursts (FRBs) in our previous publication (Bera et al. 2016), considering FRBs are of an extragalactic origin. In this paper, we present (a) the predicted pulse widths of FRBs by considering two different scattering models, (b) the minimum total energy required to detect events, (c) the redshift distribution and (d) the detection rates of FRBs for the Ooty Wide Field Array (OWFA). The energy spectrum of FRBs is modelled as a power law with an exponent ?α and our analysis spans a range ?3≤α≤5. We find that OWFA will be capable of detecting FRBs with α≥0. The redshift distribution and the event rates of FRBs are estimated by assuming two different energy distribution functions; a Delta function and a Schechter luminosity function with an exponent ?2≤γ≤2. We consider an empirical scattering model based on pulsar observations (model I) as well as a theoretical model (model II) expected for the intergalactic medium. The redshift distributions peak at a particular redshift z p for a fixed value of α, which lie in the range 0.3≤z p ≤1 for the scattering model I and remain flat and extend up to high redshifts (z?5) for the scattering model II.  相似文献   

13.
We investigate the nonlinear growth stages of the bending instability in stellar disks with exponential radial density profiles. We found that the unstable modes are global (the wavelengths are larger than the disk scale lengths) and that the instability saturation level is much higher than that following from a linear criterion. The instability saturation time scales are of the order of one billion years or more. For this reason, the bending instability can play an important role in the secular heating of a stellar disk in the z direction. In an extensive series of numerical N-body simulations with a high spatial resolution, we were able to scan in detail the space of key parameters (the initial disk thickness z0, the Toomre parameter Q, and the ratio of dark halo mass to disk mass Mh/Md). We revealed three distinct mechanisms of disk heating in the z direction: bending instability of the entire disk, bending instability of the bar, and heating on vertical inhomogeneities in the distribution of stellar matter.  相似文献   

14.
We have constructed Locally Rotationally Symmetric Bianchi type I (LRSBI) cosmological models in the f(R,T) theory of gravity when the source of gravitation is the bulk viscous fluid. The models are constructed for f(R,T)=R+2f(T) and f(R,T)=f 1(R)+f 2(T). We found that in the first case the model degenerates into effective stiff fluid model of the universe. In the second case we obtained degenerate effective stiff fluid model as well as general bulk viscous models of the universe. Some physical and kinematical properties of the models are also discussed.  相似文献   

15.
In the present article, we use an axially symmetric galactic gravitational model with a disk–halo and a spherical nucleus, in order to investigate the transition from regular to chaotic motion for stars moving in the meridian (r,z) plane. We study in detail the transition from regular to chaotic motion, in two different cases: the time independent model and the time evolving model. In both cases, we explored all the available range regarding the values of the main involved parameters of the dynamical system. In the time dependent model, we follow the evolution of orbits as the galaxy develops a dense and massive nucleus in its core, as mass is transported exponentially from the disk to the galactic center. We apply the classical method of the Poincaré (r,pr) phase plane, in order to distinguish between ordered and chaotic motion. The Lyapunov Characteristic Exponent is used, to make an estimation of the degree of chaos in our galactic model and also to help us to study the time dependent model. In addition, we construct some numerical diagrams in which we present the correlations between the main parameters of our galactic model. Our numerical calculations indicate, that stars with values of angular momentum Lz less than or equal to a critical value Lzc, moving near to the galactic plane, are scattered to the halo upon encountering the nuclear region and subsequently display chaotic motion. A linear relationship exists between the critical value of the angular momentum Lzc and the mass of the nucleus Mn. Furthermore, the extent of the chaotic region increases as the value of the mass of the nucleus increases. Moreover, our simulations indicate that the degree of chaos increases linearly, as the mass of the nucleus increases. A comparison is made between the critical value Lzc and the circular angular momentum Lz0 at different distances from the galactic center. In the time dependent model, there are orbits that change their orbital character from regular to chaotic and vise versa and also orbits that maintain their character during the galactic evolution. These results strongly indicate that the ordered or chaotic nature of orbits, depends on the presence of massive objects in the galactic cores of the galaxies. Our results suggest, that for disk galaxies with massive and prominent nuclei, the low angular momentum stars in the associated central regions of the galaxy, must be in predominantly chaotic orbits. Some theoretical arguments to support the numerically derived outcomes are presented. Comparison with similar previous works is also made.  相似文献   

16.
Based on the selenothermsT(z) (= temperature-depth functions) and melting point-depth functionsT m(z) viscosity valuesη(z) are calculated. According to two different creep laws used, two sets of viscosity values are obtained. Viscosities in the outer part of the Moon are found to be larger than those anywhere on Earth. These high values ofη explain the large elasticityQ found in lunar seismograms. Viscosities below about 500 km in depth are so small that, at present, some kind of convection or a flow of matter is possible. Tidegenerated moonquakes at depths of around 1000 km seem to be connected with some viscous process. From considerations of viscosities at the time period of mare filling, some selection of ancient selenotherms may be performed.  相似文献   

17.
The magnetorotational instability (MRI) of differential rotation under the simultaneous presence of axial and azimuthal components of the (current‐free) magnetic field is considered. For rotation with uniform specific angular momentum the MHD equations for axisymmetric perturbations are solved in a local short‐wave approximation. All the solutions are overstable for Bz · Bϕ ≠ 0 with eigenfrequencies approaching the viscous frequency. For more flat rotation laws the results of the local approximation do not comply with the results of a global calculation of the MHD instability of Taylor‐Couette flows between rotating cylinders. – With Bϕ and Bz of the same order the traveling‐mode solutions are also prefered for flat rotation laws such as the quasi‐Kepler rotation. For magnetic Prandtl number Pm 0 they scale with the Reynolds number of rotation rather than with the magnetic Reynolds number (as for standard MRI) so that they can easily be realized in MHD laboratory experiments. – Regarding the nonaxisymmetric modes one finds a remarkable influence of the ratio Bϕ/Bz only for the extrema. For Bϕ ≫ Bz and for not too small Pm the nonaxisymmetric modes dominate the traveling axisymmetric modes. For standard MRI with Bz ≫ Bϕ, however, the critical Reynolds numbers of the nonaxisymmetric modes exceed the values for the axisymmetric modes by many orders so that they are never prefered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The low-redshift IGM probes the last ten billion years of metal enrichment from galactic feedback processes. We present preliminary results from a survey of intergalactic metal-line absorption systems in archival HST STIS, GHRS, and FUSE spectra of ≈50 z?2 UV-bright objects. We summarize the detailed analysis of one sightline (PKS1302–102, z QSO =0.2784) with which we set the methodology for the larger survey. We use simple CLOUDY models to constrain the ionizing mechanism(s) and metallicities for the metal-line systems. For about 15 sightlines, including PKS1302–102, we have a complementary galaxy survey, and we look for correlations between galaxies and absorption systems in order to understand the large-scale distribution of the metal-enriched IGM.  相似文献   

19.
The geometry of space at high redshifts is dependent on the value of the cosmological constant (or its normalised contribution to the curvature of space, 0). Here we investigate the prospects for constraining 0 from the apparent dimensions of structures seen at very highz. As an example we consider the single highest redshift structure currently known, atz=3.4. We show that there can be substantial differences in apparent orientation, depending on the cosmological model assumed, in particular the radial stretching at highz can lead to structures inprobably well aligned with the line of sight if we (incorrectly) assume a large value of 0. In our example we are limited by the effect of the (unknown) dynamics within this cluster/supercluster. However, a suitably well defined, relatively small, sample of large structures at highz, along with a study of their velocity fields, may provide an alternative, and complementary, approach to the use of very large statistical samples as required by previously suggested methods.  相似文献   

20.
We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3 < z < 5.5 selected among the X-ray sources of the “serendipitous” XMM-Newton survey presented in the 3XMMDR4 catalog (the median X-ray flux is ≈5 × 10?15 erg s?1 cm?2 in the 0.5–2 keV energy band) and located at high Galactic latitudes |b| > 20° in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error δ mz′ < 0.2 and a color i′ ? z′ < 0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences χ2(z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z = 0 and obtained a sample of quasars with photometric redshift estimates 2.75 < z phot < 5.5. The selection completeness of known quasars at z spec > 3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation (Δz = |z spec ? z phot|) is σ Δz /(1+z spec) = 0.07, while the outlier fraction is η = 9% when Δz/(1 + z спек.) > 0.2. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3 < z < 5.5 will allow the purity of this sample to be estimated more accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号