首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A forward-reverse interplanetary shock was observed on 25 March 1969 by the magnetometer and plasma detector on the HEOS-1 satellite. This relatively rare event was described by Chao et al (1972) who concluded that the shock pair was formed at a distance 0.10–0.13 A.U. upstream of the Earth as a result of the interaction between a fast and a slow solar wind streams. Simultaneous observations of 1 MeV solar proton fluxes were also performed on HEOS-1. A characteristic intensity peak was observed as the forward shock passed by the spacecraft. The evolution of the proton intensity, together with a detailed analysis of anisotropies and pitch angle distributions show a complex dynamic picture of the effect of the forward shock on the ambient proton population. Significant changes in particle fluxes are seen to be correlated with fluctuations in the magnetic field. It is suggested that simple geometrical models of shock-associated acceleration should be expanded to include the effect of magnetic fluctuations on particle fluxes. The interaction region limited by the forward and reverse shocks contained a large variety of magnetic fluctuations. Following the tangential discontinuity separating the fast solar wind stream from the preceding slow stream, a sunward flow was observed in the proton data, followed by a small but significant drop in intensity prior to the reverse shock.  相似文献   

3.
4.
In this paper a self-similar motion in a medium of infinite electrical conductivity has been investigated in spherical symmetry under the influence of an idealized magnetic field and a comparison has been made of the state of flow variables with and without magnetic field.  相似文献   

5.
6.
The contraction of an interstellar cloud is followed. The results indicates that there are shock waves appear during contraction. In order to study the effect of shock waves, two models have been studied. The post-shock temperature for the two models are, respectively, 3006 K and 2984 K. The density increases by more than three orders of magnitude. The gas is generally cooled by atoms, molecules, and grains. The dominant cooling process changes according to the chemical composition and the temperature of the gas. The thermal equilibrium depends on the existing physical conditions.  相似文献   

7.
8.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   

9.
10.
A shock wave passing through a stellar atmosphere disturbs the gas, and the consequent adjustment of the fluid is a redistribution of the shock's kinetic energy among the various degrees of freedom. This paper deals with the effects of the Lyman continuum on the shock front. The shock heated gas is cooled principally by ionizing collisions of ground state atoms. This process is followed by a large quasi-isothermal region in which radiative recombinations occur. A final cycle of processes consisting of ionization, photo-recombinations to upper-level and collisional de-excitation, gives way to a sequence of statistical balances as each degree of freedom in the fluid attains equilibrium. Our calculations show that to a great extent, the shock structure is separated into successive regions of internal and radiative relaxation by an intermediate layer of ionized gas appearing at high shock speeds. Numerical results are presented for a range of shock speeds typifying a cepheid atmosphere.Radiation field and gas motions in shock waves are coupled, but the gas reacts little to the radiation it produces. Only the Lyman continuum has an appreciable effect on the shock structure. The principal escape of energy from the shock wave is through continuum radiation produced in recombinations to upper levels; thus the continuum emission in the red is stronger than an equivalent black body. Lyman photons are trapped in the shock while 20–30% of the shock's kinetic energy escapes to the Balmer and Paschen continua after the Lyman continuum is in equilibrium. The post- and pre-shock lines, as well as the post-shock continuum above the Lyman constitute the only observable spectra which emanate from the shock wave. The shock structure is perturbed only by the radiation which is not observed, and its absence tends to distort the emission profile from a Planck distribution.This work was originally started at Smithsonian Observatory and was completed at City College New York under contract with NASA Institute for Space Studies, New York.  相似文献   

11.
Abstract— The occurrence of diamonds in terrestrial impact craters and meteorites is related to dynamic shock loading during hypervelocity impacts. To understand the mechanism of impact diamond formation in natural rocks, shock‐recovery experiments with graphite gneiss were carried out at shock pressures between 35 and 79 GPa. This is the first report on the successful shock synthesis of microdiamonds in a natural rock. Micrometer‐size diamonds and a wide range of intermediate, presently unclassified, amorphous, and disordered carbon phases were observed within vesiculated biotite melts in the vicinity of relic graphite grains using microRaman spectrometry. We explain these findings by jetting mechanisms of carbon and graphite clusters, originating at the edges of graphite grains, into the very hot and volatile rich biotitic melt veins during shock loading. This environment enabled the thermally activated crystallization of diamonds during shock compression in a period of less than 0.5 μsec. Regraphitization of diamonds during pressure release was widespread and caused the formation of the amorphous to disordered carbon phases recorded frequently with microRaman spectroscopy. The surviving diamonds must have cooled down to 2000 K during the compression phase at local thermal sinks and cooler interfaces to avoid regraphitization.  相似文献   

12.
Cathodoluminescence (CL) analyses were carried out on maskelynite and lingunite in L6 chondrites of Tenham and Yamato-790729. Under CL microscopy, bright blue emission was observed in Na-lingunite in the shock veins. Dull blue-emitting maskelynite is adjacent to the shock veins, and aqua blue luminescent plagioclase lies farther away. CL spectroscopy of the Na-lingunite showed emission bands centered at ~330, 360–380, and ~590 nm. CL spectra of maskelynite consisted of emission bands at ~330 and ~380 nm. Only an emission band at 420 nm was recognized in crystalline plagioclase. Deconvolution of CL spectra from maskelynite successfully separated the UV–blue emission bands into Gaussian components at 3.88, 3.26, and 2.95 eV. For comparison, we prepared K-lingunite and experimentally shock-recovered feldspars at the known shock pressures of 11.1–41.2 GPa to measure CL spectra. Synthetic K-lingunite has similar UV–blue and characteristic yellow bands at ~550, ~660, ~720, ~750, and ~770 nm. The UV–blue emissions of shock-recovered feldspars and the diaplectic feldspar glasses show a good correlation between intensity and shock pressure after deconvolution. They may be assigned to pressure-induced defects in Si and Al octahedra and tetrahedra. The components at 3.88 and 3.26 eV were detectable in the lingunite, both of which may be caused by the defects in Si and Al octahedra, the same as maskelynite. CL of maskelynite and lingunite may be applicable to estimate shock pressure for feldspar-bearing meteorites, impactites, and samples returned by spacecraft mission, although we need to develop more as a reliable shock barometer.  相似文献   

13.
We examine the problem of a shock wave propagating in a gravitational field in the presence of pressure and density gradients by attacking the non-linear equations of fluid flow. Our approach is analytical rather than numerical, and we analyze the characteristic equations of a fluid in the presence of gravity with radiative dissipation. Because the radiation field enters the fluid equations in the form of an integral, radiative dissipation may be considered an inhomogeneity which does not affect the characteristic directions. The fluid equations remain hyperbolic and thus are amenable to solution by the standard techniques of gas analysis.We give an equation of path for a shock wave and we enumerate the physical conditions which lead to stability or instability. We find that shock waves are generally unstable in most stellar atmospheres unless they are very weak. The form of the instability is that of a spicule deformation similar to that observed in the upper solar chromosphere.This work was carried out at the Smithsonian-Harvard Astrophysical Observatory and was presented in a thesis to Brandeis University, May 1963.  相似文献   

14.
Similarity solutions are obtained for spherical radiation-driven shock waves propagating in a non-uniform atmosphere at rest obeying a density power law. Approximate analytical solutions are also obtained and found to be in good agreement with the numerical solutions. The effect of the parameter characterizing the initial density distribution of the gas on solutions of the flow field is studied in detail. It is also shown analytically that the shock wave propagates as an overdriven detonation.  相似文献   

15.
The origin of radio emission from plerions is considered. Recent observations suggest that radio-emitting electrons are presently accelerated rather than having been injected at early stages of the plerion evolution. The observed flat spectra without a low-frequency cut-off imply an acceleration mechanism that raises the average particle energy by orders of magnitude but leaves most of the particles at an energy of less than approximately a few hundred MeV. It is suggested that annihilation of the alternating magnetic field at the pulsar wind termination shock provides the necessary mechanism. Toroidal stripes of opposite magnetic polarity are formed in the wind emanating from an obliquely rotating pulsar magnetosphere (the striped wind). At the termination shock, the flow compresses and the magnetic field annihilates by driven reconnection. Jump conditions are obtained for the shock in a striped wind. It is shown that the post-shock magnetohydrodynamic parameters of the flow are the same as if the energy of the alternating field had already been converted into plasma energy upstream of the shock. Therefore, the available estimates of the ratio of the Poynting flux to the matter energy flux, σ, should be attributed not to the total upstream Poynting flux but only to that associated with the average magnetic field. A simple model for the particle acceleration in the shocked striped wind is presented.  相似文献   

16.
Similarity solutions describing the flow of a perfect gas behind a spherical and cylindrical shock wave in a magnetic field with radiation heat flux have been investigated. The total energy of the expanding wave has been assumed to remain constant. The solutions, however, are only applicable to a gaseous medium where the undisturbed pressure falls as the inverse square of the distance from the line of explosion.  相似文献   

17.
Dynamical evolution of a relativistic explosion resulting from a large amount of energy release in a homogenous medium is studied using the Khalatnikov equation describing relativistic, hydrodynamic, planar flow. The early phase of the explosion is idealized to two stages: a free expansion and a shock wave stage. By the hodograph transformation inverting the dependent and independent variables, the hydrodynamic equations for the relativistic flow are reduced to second-order linear equations in a velocity-enthalpy space and they are solved by the method of Laplace transformation. The propagation laws and flow structures of the relativistic expansion are obtained at each stage. In the free expansion stage, the flow with a sufficiently high sound velocity forms a thin shell of the energy density in the comoving frame at the front and accelerates the front. In the shock wave stage, the Lorentz factor of the shock front decreases logarithmically with time. The transition time from a free expansion to a shock wave stage suggests that the super-light expansion observed in extragalactic radio sources has no spherical geometry but must be confined to a narrow cone.  相似文献   

18.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   

19.
Shock recovery experiments were performed at 12.5, 25, 34, 40, and 56 GPa at 25 °C, and at 18 and 25 GPa at 400 °C, on a high‐grade, migmatitic, garnet‐cordierite metapelite from the Etivé aureole, Scotland. Objectives for this study were to (1) characterize shock effects in a complex polymineralic rock with a significant proportion of hydrous ferromagnesian minerals, both as a function of variable shock pressure and preshock temperature, and (2) to explore the effects of shock impedance contrast between component minerals on the respective abundances and distribution of these features. At any shock pressure, the order of decreasing intensity of shock metamorphic effects in component phases is: cordierite (Crd)→biotite (Bt)→plagioclase (Pl)→K‐feldspar (Kfs)→quartz (Qtz)→garnet (Grt)→orthopyroxene (Opx). Samples shocked to pressures below 40 GPa (25 °C) were typically characterized by marked heterogeneous distribution of shock effects on both intragranular and intergranular scales. Shock heterogeneity is mainly attributed to shock impedance contrast between contiguous phases, and manifests as shock amplification locally where shock impedance contrast is greatest, and shock suppression where impedance contrast is least. The heterogeneous distribution of shock metamorphic effects in both experiments and natural rocks is a signature of extreme disequilibrium at the submillimeter scale. The heterogeneous distribution of shock metamorphic effects mitigates against the use of shock effects in minerals exclusively as regional shock pressure barometers, and ought to be augmented by additional constraints on shock pressure from numerical models.  相似文献   

20.
We calculate the reverse shock (RS) synchrotron emission in the optical and the radio wavelength bands from electron–positron pair-enriched gamma-ray burst ejecta with the goal of determining the pair content of gamma-ray bursts (GRBs) using early-time observations. We take into account an extensive number of physical effects that influence radiation from the RS-heated GRB ejecta. We find that optical/infrared flux depends very weakly on the number of pairs in the ejecta, and there is no unique signature of ejecta pair enrichment if observations are confined to a single wavelength band. It may be possible to determine if the number of pairs per proton in the ejecta is ≳100 by using observations in optical and radio bands; the ratio of flux in the optical and radio at the peak of each respective RS light curve is dependent on the number of pairs per proton. We also find that over a large parameter space, RS emission is expected to be very weak; GRB 990123 seems to have been an exceptional burst in that only a very small fraction of the parameter space produces optical flashes this bright. Also, it is often the case that the optical flux from the forward shock is brighter than the RS flux at deceleration. This could be another possible reason for the paucity of prompt optical flashes with a rapidly declining light curve at early times as was seen in GRBs 990123 and 021211. Some of these results are a generalization of similar results reported in Nakar & Piran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号