首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The simultaneous observations of Pc4 geomagnetic pulsations at the two temporary stations, located along the geomagnetic meridian 50 km to the North and South from the observatory Borok (L = 2.8), have been used for the investigation of amplitude gradients of both H- and D-components of these pulsations. It has been discovered that the direction of a meridional component of the gradient H (gradMH) depends on the frequency ƒ of a spectral component of pulsations. The gradMD is directed more or less permanently northward independently from the frequency ƒ These results are the consequence of a local amplification of geomagnetic pulsations due to Alfvén waves resonance along the magnetic field lines. It has been demonstrated that the frequencies ƒR for which the northward direction of gradMH is replaced by the southward one (with increasing ƒ) can be interpreted as the eigen frequencies of the field line which intersects the meridian in the middle between two temporary stations, i.e. in Borok.

The possible applications of a gradient method of measurement of the magnetic field lines' eigen frequencies are discussed.  相似文献   


2.
The UKS spacecraft operated from August 1984 through to January 1985. During that time, it made multiple crossings of the magnetopause in local time sectors extending from mid-afternoon to just behind the dawn meridian. We have surveyed the magnetometer records from these magnetopause encounters and have compiled a catalogue of flux transfer events (FTEs using criteria identical to those employed by Rijnbeek et al. (1984, J. Geophys. Res. 89, 786) in their survey of ISEE spacecraft magnetometer data. Using the catalogue, we find that FTE occurrence determined from the UKS data set is substantially less than that detected using data from the early ISEE 1/2 spacecraft orbits. The UKS data set shows a correlation between FTE occurrence and southward external magnetic field, but there are several instances of passes in which no FTEs are detected but for which the external field was unam- biguousluy southward. The passes with the largest number of events are those for which the field outside the magnetopause has a large BM component. We conclude that the lower latitude of the UKS encounters is responsible for the discrepancy with the ISEE occurrence. The most likely source region appears to be near the subsolar region.  相似文献   

3.
During March 20, 1993, from 12:00 to 16:00 UT, repeated radio burst activity was observed in the 0.8–1.2 GHz frequency range. Periods in intervals 0.1–0.5, 0.7–1.0, 2.8–3.9, 75–170 s, and 15–25 min were recognized. This long-lasting narrowband activity consisted mainly of pulsations and continua. In some intervals it was accompanied not only by spikes, broadband pulsations, and fibers in the 1–2 GHz frequency range, but also by type III and U burst activity at lower frequencies as well as by hard X-ray bursts. From several radio bursts, two characterized by different fine structures were selected and compared. The observed differences are explained by different distribution functions of superthermal electrons. The position of the 0.8–1.2 GHz radio source above the photosphere and the magnetic field in the fiber burst source were estimated to be 66 000–75 000 km and 120–135 G, respectively.Presented at te CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

4.
Most measurements of long period ULF pulsations have come from ground based and single satellite observations. The observations have given strong support to the idea that these waves are resonant standing hydromagnetic waves on geomagnetic field lines. Simultaneous ground-satellite observations provide further details of the pulsation structure and are useful for examining the effect of the ionosphere on the transmission of the waves to the ground. Recently, multisatellite observations have been used to provide further insight into the nature of pulsations and we review the results obtained using this technique. Among the results presented are those from the ISEE 1 and 2 spacecraft which are closely spaced in identical orbits, making it possible to distinguish temporal from spatial structure in waves. The ISEE spacecraft have made measurements of resonant region widths and resonance harmonics. In addition, examples are shown of recent multisatellite observations of the global nature of some pulsations and the localization of Pi2 pulsations in space.  相似文献   

5.
Pi 2 magnetic pulsations are a frequent occurrence at the earth's surface and have been shown to be clearly correlated with substorm expansion onset. These pulsations are also observed in space at synchronous orbit at the same time as they are seen on the ground at the satellite conjugate point. In this brief report we describe three days in 1969 on which Pi 2 magnetic pulsations were simultaneously observed at the synchronous satellite ATS 1 and at Tungsten, N.W.T., Canada, near the foot of the ATS 1 magnetic field line. These Pi 2 bursts all exhibit the characteristic waveform and frequency, as well as an ~0.3 Hz enhancement, at both locations. This high frequency enhancement appears to be an integral part of Pi 2 bursts both on the surface and at synchronous orbit and should be considered in the development of models of generation mechanisms.  相似文献   

6.
Auroral, magnetic variation and pulsation data from the dense network in the nearmidnight portion of the auroral zone are used together with the measurements of suprathermal particles and electromagnetic fields by the IMP-8 and ISEE-1 spacecraft within the plasma sheet to study the characteristics of activity during two magnetically quiet periods on 3 March 1976 and 23 March 1979. Contrary to existing beliefs, we found clear signatures of numerous (5–10 events per hour) transient events, characterized by plasma flows, energetic particle bursts and EB field variations. A close association of these events in the plasma sheet with the local auroral flares (LAFs) in the conjugate sector of the auroral zone is established for many events. We conclude that LAF (local auroral arc activation with associated Pi pulsations but extremely weak magnetic bays) have the same plasma sheet manifestations (apparently, the same physics) as the individual substorm intensifications during strong substorm expansion events, which differ from the studied quiet periods mainly by the strength and number of these intensifications. These transient phenomena seem to play an important role in the energetics of the quiet time magnetotail.  相似文献   

7.
We discuss the effects in ionospheric absorption of particle precipitation observed in the afternoon-early evening sector during substorms with onset in the midnight sector. All events considered here occurred during magnetically disturbed periods, Kp > 3. For many of the substorm events a smooth southward moving absorption bay is seen in the midnight and evening sectors about 1 h preceeding the onset. The magnetic pulsation activity is low during this preceding bay.

After substorm onset near magnetic midnight the precipitation region may expand with a sharp onset at the front towards the West in spatially confined regions at high and low L-values separately with about equal velocities. The observations are consistent with a model of westward expansion of the energetic electron precipitation in two regions, aligned parallel to the auroral oval, at high and low L-values of about L 6 and L 4.8.

The westward expanding absorption activity correlates well with local magnetic variations. In magnetic pulsations PiB events are seen at high latitudes simultaneously with the westward moving onsets while at low latitudes IPDP pulsations are observed during the active part of the absorption events. Later in the substorm event a slowly varying absorption event (SVA) is sometimes observed at the lower L-values, L 3–4.  相似文献   


8.
One of the most powerful and long-lived flares on the active red dwarf YZ CMi is considered. The flare was observed in the U band at the Terskol Peak Observatory on February 9, 2008. During the formation of the flare over the course of 30 seconds, the flare-induced stellar luminosity increased and became more than 180 times the preflare value. The total duration of the flare was approximately one hour. At the flare maximum, quasi-periodic pulsations having a specified period of approximately 11 s, an initial modulation depth of 5.5%, and an exponential damping time of 29 s were discovered using wavelet analysis. Assuming that the pulsations were caused by fast magnetohydrodynamic oscillations of a flare loop, the following parameters were determined in the region of energy release using coronal seismology methods: plasma concentration (2 × 1010 cm−3), temperature (3 × 107 K), and magnetic field strength (0.015 T).  相似文献   

9.
We describe the observation of a magnetic pulsation with a period of 55 s, recorded at geostationary orbit by three satellites (ATS 6, SMS 1 and SMS 2) in the local time sector 2100–2400. We use magnetic data from all three spacecraft and also plasma data from ATS 6. The pulsation had a large compressional magnetic component which appeared to be balanced by pressure fluctuations in the hot ring current plasma which were in antiphase with the magnetic variations. This allows the wave to be guided along a field line. From the plasma data we are also able to obtain estimates of the field line displacement and hence the electric field, which enables us to conclude that this is a second harmonic field line resonance. We find that the wave has a very short East-West (E-W) wavelength (m?100) and a westward azimuthal group velocity of about 30 km s?1. The most probable source for this wave is a bounce resonant interaction with ring current protons. The characteristics of this wave are in many ways similar to those of giant pulsations observed on the ground. ATS 6 was near the inner edge of the ring current electrons and as the wave converted the 10 keV electron Alfvén layer back and forth across ATS 6, we were able to estimate the Alfvén layer energy gradient and obtain a value of 1 keV in 1000 km. This gradient is considerably steeper than that predicted by a steady uniform convection electric field.  相似文献   

10.
Geomagnetic field research carried out at the Hermanus Magnetic Observatory over the past decade is reviewed. An important aspect of this research has been the study of geomagnetic field variations, with particular emphasis on ULF geomagnetic pulsations. Features of geomagnetic pulsations which are unique to low latitude locations have been investigated, such as the cavity mode nature of low latitude Pi 2 pulsations and the role played by ionosphericO + ions in the field line resonances responsible for Pc 3 pulsations. A theoretical model has been developed which is able to account for the observed relationships between geomagnetic pulsations and oscillations in the frequency of HF radio waves traversing ionospheric paths. Other facets of the research have been geomagnetic field modelling, aimed at improving the accuracy and resolution of regional geomagnetic field models, and the development of improved geomagnetic activity indices.  相似文献   

11.
It is well known that the oscillating MHD waves drive periodic variations in the magnetic field. But how the MHD waves can be triggered in the flaring loops is not yet well known. It seems to us that this problem should be connected with the physical processes occurring in the flare loop during a solar flare. A peculiar solar flare event at 04:00–04:51 UT on May 23, 1990 was observed simultaneously with time resolutions 1 s and 10 ms by Nanjing University Observatory and Beijing Normal University Observatory, which are about 1000 km apart, at 3.2 cm and 2 cm wavelengths, respectively. Two kinds of pulsations with quasi-periods 1.5 s and 40 s were found in radio bursts at the two short centimeter waves; however, the shorter quasi-periodic pulsations were superimposed upon the longer ones. From the data analysis of the above-mentioned quasi-periodic pulsations and associated phenomena in radio and soft X-ray emissions during this flare event published in Solar Geophysical Data (SGD), the authors suggest that the sudden increase in plasma pressure inside (or underlying) the flare kernel due to the upward moving chromospheric evaporated gas, which is caused by the explosive collision heating of strong non-thermal electrons injected downwards from the microwave burst source, plays the important role of triggering agents for MHD oscillations (fast magneto-acoustic mode and Alfvén mode) of the flare loop. These physical processes occurring in the flare loop during the impulsive phase of the solar flare may be used to account for the origin and observational characteristics of quasi-periodic pulsations in solar radio bursts at the two short centimeter wavelengths during the flare event of 1990 May 23. In addition, the average physical parameters N, T, B inside or underlying the flare kernel can be also evaluated.  相似文献   

12.
On 15 February, 1977, ground magnetic, ionospheric electric and auroral signatures of a multiple onset substorm were observed simultaneously by the Scandinavian Magnetometer Array (SMA), the Scandinavian Twin Auroral Radar Experiment (STARE) and the Finnish all-sky camera chain. Between 21:00 and 21:30 U.T., i.e. around local magnetic midnight, three consecutive local auroral break-ups were observed over Scandinavia. Each of these break-ups was preceded by a clear fading of the aurora and magnetic fields (while the electric fields remained unaffected), and occurred slightly south of the Harang discontinuity in the region of north-westward-directed electric fields. They were associated with a sudden change in direction of the electric field from north-west to south-west and the appearance of a westward equivalent current in the localized active region (about 1200 × 300 km2). These observations matched the features to be expected during the generation of a Cowling channel by a strong increase of the ionospheric conductivities due to precipitating auroral electrons. Numerical model calculations, based on the observations during the initial brightening and peak development of the second, most conspicuous break-up, show that the field-aligned currents at the northern and southern border of the active region are indeed very weak. However, highly localized and intense upward field-aligned currents at the western edge of the active region and more widespread and less intense downward currents in the eastern half preserve current continuity of the westward Cowling current and complete the substorm current wedge.  相似文献   

13.
Lavraud  B.  Gosling  J. T.  Rouillard  A. P.  Fedorov  A.  Opitz  A.  Sauvaud  J.-A.  Foullon  C.  Dandouras  I.  Génot  V.  Jacquey  C.  Louarn  P.  Mazelle  C.  Penou  E.  Phan  T. D.  Larson  D. E.  Luhmann  J. G.  Schroeder  P.  Skoug  R. M.  Steinberg  J. T.  Russell  C. T. 《Solar physics》2009,256(1-2):379-392

We analyze Wind, ACE, and STEREO (ST-A and ST-B) plasma and magnetic field data in the vicinity of the heliospheric current sheet (HCS) crossed by all spacecraft between 22:15 UT on 31 March and 01:25 UT on 1 April 2007 corresponding to its observation at ST-A and ST-B, which were separated by over 1800 R E (or over 1200 R E across the Sun?–?Earth line). Although only Wind and ACE provided good ion flow data in accord with a solar wind magnetic reconnection exhaust at the HCS, the magnetic field bifurcation typical of such exhausts was clearly observed at all spacecraft. They also all observed unambiguous strahl mixing within the exhaust, consistent with the sunward flow deflection observed at Wind and ACE and thus with the formation of closed magnetic field lines within the exhaust with both ends attached to the Sun. The strong dawnward flow deflection in the exhaust is consistent with the exhaust and X-line orientations obtained from minimum variance analysis at each spacecraft so that the X-line is almost along the GSE Z-axis and duskward of all the spacecraft. The observation of strahl mixing in extended and intermittent layers outside the exhaust by ST-A and ST-B is consistent with the formation of electron separatrix layers surrounding the exhaust. This event also provides further evidence that balanced parallel and antiparallel suprathermal electron fluxes are not a necessary condition for identification of closed field lines in the solar wind. In the present case the origin of the imbalance simply is the mixing of strahls of substantially different strengths from a different solar source each side of the HCS. The inferred exhaust orientations and distances of each spacecraft relative to the X-line show that the exhaust was likely nonplanar, following the Parker spiral orientation. Finally, the separatrix layers and exhausts properties at each spacecraft suggest that the magnetic reconnection X-line location and/or reconnection rate were variable in both space and time at such large scales.

  相似文献   

14.
This paper is based on the postulate that the natural electromagnetic radiation observed in the micropulsation band is accounted for by the eigenmodes of a resonant cavity in the Earth's outer atmosphere, just as the adjacent ELF part of the spectrum is explained by resonances in the Earth-ionosphere cavity. The inner edge of the plasma sheet (the Alfvén layer) forms an effective resonant cavity which we call the Alfvénsphere. Its complex medium is characterized by two parameters, effective conductivity, and effective Alfvén speed: its quasi-stationary states are specified by two state parameters, effective cavity size, and effective time scale for magnetospheric processes, and in principle, they can be evaluated from the power spectra of observed micropulsations. Because of the complex geometry of the cavity and the fact that the vector hydromagnetic wave equation for an asymmetric electric field is not simply separable in spherical and orthogonal dipole coordinates (and the spatial boundary value problem is virtually insoluble), a model is developed which contains the essential physics and admits of tractable equations. A coupling scheme is defined and discussed which permits one to study the eigenvalue equation under conditions of weak and strong coupling as well as the uncoupled case. Emphasis is placed on the most difficult weakly-coupled case because the results can be readily compared with the uncoupled case. The complex dispersion relation-ship is presented and complex eigenvalues are calculated. It is shown that for any mode (v, i, m), the fundamental (i = 1) appears at the highest latitude and the highest harmonic (i = imax) appears at the lowest latitude. Further it is shown that the fundamental and harmonics are split into multiplet frequency states, clustered at different latitudes, and ordered at a particular latitude by the asymmetric label m. This property is used to explain beating and atitudinal and longitudinal variations in pearl pulsations. It is demonstrated that the east-west magnetic component of the perturbed magnetic field (for any mode) has two spatial resonances (logarithmic and asymmetric) and this feature can be used to derive and interpret the T cos2Θ = const law. This in turn suggests a method for ordering the east-west component power spectra for a station at any latitude below 70° N mag. in terms of v, and evaluating the corresponding phenomenological state parameters. The inescapable conclusion appears to be that there is no intrinsic difference between the ‘different’ classes of pulsations; they are simply the excited eigenmodes of the Alfvénsphere for different quasi-stationary states.  相似文献   

15.
季海生  宋慕陶 《天文学报》2000,41(3):257-269
用时间缓变的非线性无力场模拟超级活动区(弧岛式大型δ黑子)的磁场位形。这个复杂磁场包含了向量磁场的主要观测特征:正负磁流极端不平衡性(正负磁流之比为1:6),U形磁反变线,局域磁场的二极子、四极子差异性。模拟结果厅用来解释一些观测结果:(1)大耀斑主要产生在U形中性线的磁性混杂区或四极子区(2)U形反变线的准双极性区几乎没有大耀斑很小。(3)活动区内部的大型旋转运动和磁沲运动会导致四极子场磁拓扑分  相似文献   

16.
A small, isolated substorm with an expansion phase onset at 07:39 U.T. (±1 min) on 28 January 1983 was well observed by ground-based instrumentation as well as by low- and high-altitude spacecraft. This event period was chosen as a detailed analysis interval because of the comprehensive nature of the data coverage, and because ISEE-3 identified signatures within the distant tail (220 RE) following the substorm onset which had been interpreted as those of a plasmoid passage. In this paper we provide a comprehensive timeline of the growth, expansion, and recovery phases of the substorm. The magnetospheric energy input rates are evaluated using IMP-8 in the upstream solar wind. For the first time, DE-1 imaging sequences are used to examine auroral features during the growth and expansion phases while ISEE-3 was in the deep tail. Substorm current wedge location and expansion onset information was provided by ground-based magnetometer and geostationary orbit (particle and magnetic field) data. The plasma, energetic particle, and field signatures at ISEE-3 are considered within the framework of the near-Earth data sets. We quantitatively estimate substorm energy input and output relationships for this case and we evaluate the timing and physical dimensions of the distant tail disturbance implied by the global observations available. Overall, the present analysis provides a thorough documentation of a substorm to an unprecedented degree; most of the data support the developing paradigm of the near-Earth neutral line and plasmoid formation model. We also consider the boundary layer dynamics model of substorms as an alternative explanation of the global magnetospheric phenomena in this event, but as presented this model does not provide a superior organization of the available data sets.  相似文献   

17.
During the Near-Earth Asteroid Rendezvous (NEAR) spacecraft's investigation of asteroid 433 Eros, inflight calibration measurements from the multispectral imager (MSI) have provided refined knowledge of the camera's radiometric performance, pointing, and light-scattering characteristics. Measurements while at Eros corroborate most earlier calibration results, although there appears to be a small, gradual change in instrument dark current and flat field due to effects of aging in the space environment. The most pronounced change in instrument behavior, however, is a dramatic increase in scattered light due to contaminants accumulated on the optics during unscheduled fuel usage in December 1998. Procedures to accurately quantify and to remediate the scattered light are described in a companion paper (Li et al. 2002, Icarus155, 00-00). Acquisition of Eros measurements has clarified the relative, filter-to-filter, radiometric performance of the MSI. Absolute radiometric calibration appears very well constrained from flight measurements, with an accuracy of ∼5%. Pointing relative to the spacecraft coordinate system can be determined from the temperature of the spacecraft deck with an accuracy of ∼1 pixel.  相似文献   

18.
For many years it has been known the that most intense and continuous Pc5 micropulsation activity occurs in the local time quadrant between dawn and noon. Recently, Lam and Rostoker (1978) have shown that Pc5 pulsations occur in the latitudinal regime occupied by the westward auroral electrojet and have suggested that part of the oscillating current system responsible for the pulsations involves upward field-aligned current at the boundary between the sunlit and dark ionosphere at local dawn. In this paper, we show that power in the Pc5 micropulsation range is markedly enhanced as one moves across the dawn terminator at 100 km from the nightside to the dayside. It is further shown that there is a significant increase in pulsation strength at ~0730 L.T.. The increase in Pc5 pulsation strength across the dawn terminator favors the concept that Pc5 micropulsations can be viewed as oscillations of a three-dimensional current loop involving downward current in the pre-noon sector diverging to flow in the ionosphere as part of the westward auroral electrojet and returning to the magnetosphere along field lines penetrating the ionosphere across the region separating the dark and sunlit ionosphere. We further suggest that the region of enhanced high energy electron precipitation shown by Hartz and Brice (1967) to maximize in the pre-noon quadrant is associated with the marked enhancement of Pc5 activity near 0730 L.T.  相似文献   

19.
Our high latitude ionospheric model predicts the existence of a pronounced “dayside” trough in plasma concentration equatorward of the auroral oval in both the Northern and Southern Hemispheres for solar maximum, winter, and low geomagnetic activity conditions. The trough in the Southern Hemisphere is much deeper than that in the Northern Hemisphere, with the minimum trough density at 800 km being 2 × 103 cm−3 in the Southern Hemisphere and 104 cm−3 in the Northern Hemisphere. The dayside trough has a strong longitudinal (diurnal) dependence and appears between 11:00 and 19:00 U.T. in the Southern Hemisphere and between 02:00 and 08:00 U.T. in the Northern Hemisphere. This dayside trough is a result of the auroral oval moving to larger solar zenith angles at those universal times when the magnetic pole is on the antisunward side of the geographic pole. As the auroral ionization source moves to higher geographic latitudes, it leaves a region of declining photoionization on the dayside. For low convection speeds, the ionosphere decays and a dayside trough forms. The trough is deeper in the Southern Hemisphere than in the Northern Hemisphere because of the greater offset between the geomagnetic and geographic poles. Satellite data taken in both the Northern and Southern Hemispheres confirm the gross features of the dayside trough, including its strong longitudinal dependence, its depth, and the asymmetry between the Northern and Southern Hemisphere troughs.  相似文献   

20.
《Planetary and Space Science》1985,33(11):1277-1282
In this paper we report on a study of the association between the polarization states of Pcl and ULF pulsations (primarily IPDP) and electron precipitation recorded at College, Alaska in 1983. This study indicates that there is no direct association of precipitating electrons with Pcl pulsations exhibiting left-hand polarization at the ground. We examined 33 pulsation events which occurred in the afternoon magnetosphere during the first four months of 1983. Twenty-five of the pulsations were right-hand polarized and eight were left-hand polarized. Particle precipitation was observed during 16 of the right-hand polarized events and four of the left-hand polarized events. These results indicate that the handedness of a pulsation event is not a good predictor of associated electron precipitation. Recent investigations have shown that the propagation of Pcl waves in a multicomponent plasma can account for mixed polarization signatures on source field lines. Our results then indicate that the identification of a source field line based upon polarization information alone may be incorrect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号