共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Susan L. Brown Michael R. Landry Karen E. Selph Eun Jin Yang Yoshimi M. Rii R.R. Bidigare 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1321
As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80–100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l−1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure. 相似文献
3.
Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea 总被引:1,自引:0,他引:1
Bethany R. Eden Deborah K. Steinberg Sarah A. Goldthwait Dennis J. McGillicuddy Jr. 《Deep Sea Research Part I: Oceanographic Research Papers》2009,56(10):1757-1776
Mesoscale eddies are important suppliers of nutrients to the surface waters of oligotrophic gyres, but little is known about the biological response, particularly that of higher trophic levels, to these physical perturbations. During the summers of 2004 and 2005, we followed the development of a cyclonic eddy and an anti-cyclonic mode-water eddy in the Sargasso Sea. Zooplankton (>150 μm) were collected across both eddies in 9 discrete depth intervals between 0 and 700 m. Comparison of the abundance of major taxa of mesozooplankton in the upper 150 m at eddy center and outside the eddies (day and night) indicated that the cyclone and mode-water eddy supported similar mesozooplankton communities, with several taxa significantly higher in abundance inside than outside the eddies, when compared with the Bermuda Atlantic Time-series Study site as representative of mean conditions. In both eddies copepod peak abundance occurred in the 50-100 m depth interval, coincident with the chlorophyll a maximum, suggesting elevated food concentration in the eddies may have influenced zooplankton vertical distribution. The two eddies differed in the strength of diel vertical migration of zooplankton, as indicated by the ratio of night:day abundance in the epipelagic zone, which was higher at the center of the mode-water eddy for most taxa. Over the sampling interval of 1-2 months, abundance of the three most common taxa (copepods, chaetognaths, and ostracods) decreased in the cyclone and increased in the mode-water eddy. This further supports previous findings that over the sampling period the cyclone was in a decay phase, while the mode-water eddy was sustaining nutrient fluxes and high phytoplankton concentrations. A more detailed analysis of community structure in the mode-water eddy indicated the 0-700 m integrated abundance of doliolids was significantly higher inside the mode-water eddy than outside. The presence of a mesopelagic (200-700 m) layer of lepadid barnacle cyprids in this eddy highlights the potential of eddies to transport and disperse biota. We conclude that when compared with average ambient conditions (as measured at BATS), mesoscale eddies can influence zooplankton behavior and alter zooplankton community structure which can affect food-web interactions and biogeochemical cycling in the open ocean. 相似文献
4.
Tetsuichi Fujiki Kazuhiko Matsumoto Toshiro Saino Masahide Wakita Shuichi Watanabe 《Journal of Oceanography》2013,69(1):35-43
To better understand the vertical distribution of phytoplankton in the tropical and subtropical North Pacific, we used fast repetition rate fluorometry to investigate the photo-physiological condition of the phytoplankton assemblage in this region between February and March 2007. Along 155°E, between the equator and 24°N, the peak of fluorescence (F m), an indication of the deep chlorophyll maximum (DCM), was deeper than the top of the nitracline and occurred at the 2.4 ± 1.3 % (mean ± SD) light depth (relative to 0 m). The photochemical efficiency (F v/F m) and effective absorption cross-section of photosystem II (σPSII) were low at the surface but increased rapidly at depths between the top of the nitracline (40–138 m) and the DCM (70–158 m), an indication that the photo-physiological condition of the phytoplankton improved below the top of the nitracline. The depth of the maximal F v/F m [Z(F v/F m max)] was 18–32 m deeper than the DCM and corresponded to the 0.8 ± 0.2 % light depth. The values of F v/F m at the Z(F v/F m max) were 20 % higher than those at the DCM and averaged 0.48 ± 0.01. These results suggest that the phytoplankton assemblage beneath the DCM had a high potential photosynthetic performance capacity and was growing by using the very low ambient light in this region. 相似文献
5.
Biogeochemical responses associated with the passage of a cyclonic eddy based on shipboard observations in the western North Pacific 总被引:1,自引:0,他引:1
A shipboard high-resolution hydrographic survey in the subtropical region of the western North Pacific conducted from October to November 2008 detected part of a cyclonic eddy around 30°N, 145°E. This eddy had propagated westward in the region south of the Kuroshio extension for at least 6 months as a wavelike disturbance. Within this eddy, isopycnals shallowed between a depth of 600 m and just below the surface mixed layer. In addition, maximal dissolved oxygen concentrations were observed in the subsurface layer between depths of 50 and 100 m. Nitrate was depleted within this subsurface maximal oxygen layer. These results suggest that nutrients in the deeper layers were supplied into the euphotic layer as a result of the uplift of isopycnals in the eddy, fueling the photosynthesis of phytoplankton in the subsurface and emitting an excess of oxygen due to new production. Compared with the outside of the eddy, the enhancement of oxygen and the decrease of nitrate in the center of the eddy were estimated to be 2.7 mol O2 m?2 and 0.22 mol N m?2, respectively. The primary productivity calculated using the eddy transition speed of 5.1 km day?1 was 548 mg C m?2 day?1 at the center of the eddy. The enhanced primary productivity due to the passage of the eddy is likely to have an important role in the ecosystem and on material cycling in the subtropical region. 相似文献
6.
7.
Chang-Rae Lee Keun-Hyung Choi Hyung-Ku Kang Eun Jin Yang Jae Hoon Noh Dong Han Choi 《Journal of Oceanography》2012,68(3):473-482
This study examined the biomass structure of autotrophic and heterotrophic plankton along a trophic gradient in the northwestern Pacific Ocean in an attempt to understand planktonic food web structure. Autotrophic biomass exceeded that of heterotrophic organisms in all sampling regions, but with lesser contribution to total planktonic biomass at stations of higher phytoplankton biomass, including the northern East China Sea, compared to the regions of lower phytoplankton biomass. The proportion of the biomass of heterotrophic bacteria, nanoflagellates (HNF), and dinoflagellates (HDF) relative to that of phytoplankton was all inversely related to phytoplankton biomass, but positive relationships were observed for both ciliates and mesozooplankton. Mesozooplankton biomass inclined greater than phytoplankton along the gradient of phytoplankton biomass, with biomass rise being most closely associated with ciliate and HDF biomass and, to a lesser degree, with large phytoplankton (>3?μm). Both bacteria and picophytoplankton were significantly and positively related to the biomass ratio of mesozooplankton to the sum of HDF and ciliates (i.e., proxy of mesozooplankton predation on protozoans), but no positive relationship was apparent either for HNF or for large phytoplankton. Such relationships may result from predation relief on lower food webs associated with mesozooplankton feeding on protistan plankton. 相似文献
8.
Mesoscale eddies play an important role in modulating the ocean circulation. Many previous studies on the threedimensional structure of mesoscale eddies were mainly based on composite analysis, and there are few targeted observations for individual eddies. A cyclonic eddy surveyed during an oceanographic cruise in the Northwest Pacific Ocean is investigated in this study. The three-dimensional structure of this cyclonic eddy is revealed by observations and simulated by the four-dimensional variational data assimilation(4 DVAR) system combined with the Regional Ocean Modeling System. The observation and assimilation results together present the characteristics of the cyclonic eddy. The cold eddy has an obvious dual-core structure of temperature anomaly.One core is at 50–150 m and another is at 300–550 m, which both have the average temperature anomaly of approximately-3.5°C. The salinity anomaly core is between 250 m and 500 m, which is approximately-0.3. The horizontal velocity structure is axis-asymmetric and it is enhanced on the eastern side of the cold eddy. In the assimilation experiment, sea level anomaly, sea surface temperature, and in situ measurements are assimilated into the system, and the results of assimilation are close to the observations. Based on the high-resolution assimilation output results, the study also diagnoses the vertical velocity in the mesoscale eddy, which reaches the maximum of approximately 10 m/d. The larger vertical velocity is found to be distributed in the range of 0.5 to 1 time of the normalized radius of the eddy. The validation of the simulation result shows that the 4 DVAR method is effective to reconstruct the three-dimensional structure of mesoscale eddy and the research is an application to study the mesoscale eddy in the Northwest Pacific by combining observation and assimilation methods. 相似文献
9.
10.
Minoru Kitamura Toru Kobari Makio C. Honda Kazuhiko Matsumoto Kosei Sasaoka Rie Nakamura Kazuyuki Tanabe 《Journal of Oceanography》2016,72(3):387-402
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites. 相似文献
11.
The comprehensive three-dimensional structures of an anti-cyclonic mesoscale eddy(AE) in the subtropical northwestern Pacific Ocean were investigated by combining the Argo floats profiles with enhanced vertical and temporal sampling and satellite altimetry data. The AE originated near the Kuroshio Extension and then propagated westward with mean velocity of 8.9 cm/s. Significant changes and evolutions during the AE's growing stage(T1) and further growing stage(T2) were revealed through composite analysis. In the composite eddy core,maximum temperature(T) and salinity(S) anomalies were of 1.7(1.9)°C and 0.04(0.07) psu in T1(T2) period,respectively. The composite T anomalies showed positive in almost whole depth, but the S anomalies exhibited a sandwich-like pattern. The eddy's intensification and its influence on the intermediate ocean became more significant during its growth. The trapping depth increased from 400×10~4 Pa to 580×10~4 Pa while it was growing up, which means more water volume, heat and salt content in deeper layers can be transported. The AE was strongly nonlinear in upper oceans and can yield a typical mean volume transport of 0.17×10~6 m~3/s and a mean heat and salt transport anomaly of 3.6×10~(11) W and –2.1×10~3 kg/s during the observation period. The Energy analysis showed that eddy potential and kinetic energy increased notably as it propagated westward and the baroclinic instability is the major energy source of the eddy growth. The variation of the remained Argo float trapped within the eddy indicated significant water advection during the eddy's propagation. 相似文献
12.
《Deep Sea Research Part I: Oceanographic Research Papers》2001,48(11):2373-2395
Studies of nitrogen and phosphorus dynamics in the oligotrophic surface waters of the western North Atlantic Ocean have been constrained because ambient concentrations are typically at or below the detection limits of standard colorometric methods, except during periods of deep vertical mixing. Here we report the application of high-sensitivity analytical methods—determinations of nitrate plus nitrite (N+N) by chemiluminescence and soluble reactive phosphorus (SRP) by the magnesium induced co-precipitation (MAGIC) protocol—to surface waters along a transect from the Sargasso Sea at 26°N through the Gulf Stream at 37°N, including sampling at the JGOFS Bermuda Atlantic Time-series Study (BATS) station. The results were compared with data from the BATS program, and the HOT station in the Pacific Ocean, permitting cross-ecosystem comparisons. Microbial populations were analyzed along the transect, and an attempt was made to interpret their distributions in the context of the measured nutrient concentrations.Surface concentrations of N+N and SRP during the March 1998 transect separated into 3 distinct regions, with the boundaries corresponding roughly to the locations of the BATS station (∼31°N) and the Gulf Stream (∼37°N). Although N+N and SRP co-varied, the [N+N] : [SRP] molar ratios increased systematically from ∼1 to 10 in the southern segment, remained relatively constant at ∼40–50 between 31°N and 37°N, then decreased again systematically to ratios <10 north of the Gulf Stream. Dissolved organic N (DON) and P (DOP) dominated (⩾90%) the total dissolved N (TDN) and P (TDP) pools except in the northern portion of the transect. The [DON] : [DOP] molar ratios were relatively invariant (∼30–60) across the entire transect.Heterotrophic prokaryotes (operationally defined as “bacteria”), Prochlorococcus, Synechococcus, ultra- and nanophytoplankton, cryptophytes, and coccolithophores were enumerated by flow cytometry. The abundance of bacteria was well correlated with the concentration of SRP, and that of the ultra- and nanophytoplankton was well correlated with the concentration of N+N. The only group whose concentration was correlated with temperature was Prochlorococcus, and its abundance was unrelated to the concentrations of nutrients measured at the surface.We combined our transect results with time-series measurements from the BATS site and data from select depth profiles, and contrasted these North Atlantic data sets with time-series of N and P nutrient measurements from a station in the North Pacific subtropical gyre near Hawaii [Hawaii Ocean Time-series (HOT) site]. Two prominent differences are readily observed from this comparison. The [N+N] : [SRP] molar ratios are much less than 16 : 1 during stratified periods in surface waters at the BATS site, as is the case at the HOT site year round. However, following deep winter mixing, this ratio is much higher than 16 : 1 at BATS. Also, SRP concentrations in the upper 100 m at BATS fall in the range 1–10 nM during stratified periods, which is at least one order of magnitude lower than at the HOT site. That two ecosystems with comparable rates of primary and export production would differ so dramatically in their nutrient dynamics is intriguing, and highlights the need for detailed cross ecosystem comparisons. 相似文献
13.
In the present study, we report N_2 fixation rate(~(15)N isotope tracer assay) and the diazotroph community structure(using the molecular method) in the western tropical North Pacific Ocean(WTNP)(13°–20°N, 120°–160°E). Our independent evidence on the basis of both in situ N_2 fixation activity and diazotroph community structure showed the dominance of unicellular N_2 fixation over majority of the WTNP surface waters during the sampling periods.Moreover, a shift in the diazotrophic composition from unicellular cyanobacteria group B-dominated to Trichodesmium spp.-dominated toward the western boundary current(Kuroshio) was also observed in 2013. We hypothesize that nutrient availability may have played a major role in regulating the biogeography of N_2 fixation.In surface waters, volumetric N_2 fixation rate(calculated by nitrogen) ranged between 0.6 and 2.6 nmol/(L·d) and averaged(1.2±0.5) nmol/(L·d), with 10 μm size fraction contributed predominantly(88%±6%) to the total rate between 135°E and 160°E. Depth-integrated N_2 fixation rate over the upper 200 m ranged between 150 μmol/(m~2·d)and 480 μmol/(m~2·d)(average(225±105) μmol/(m~2·d). N_2 fixation can account for 6.2%±3.7% of the depthintegrated primary production, suggesting that N_2 fixation is a significant N source sustaining new and export production in the WTNP. The role of N_2 fixation in biogeochemical cycling in this climate change-vulnerable region calls for further investigations. 相似文献
14.
《Deep Sea Research Part I: Oceanographic Research Papers》2002,49(9):1571-1590
Water mass formation rates were calculated for subtropical underwater (STUW) in the North and South Pacific by two partially independent methods. One is based on the World Ocean Circulation Experiment (WOCE)/TOGA drifter array over two periods: 1988–1992, and 1992–1996. Drifter velocities were used to calculate two components of the subduction rate, lateral induction and vertical pumping. The second method used CFC-12 data (1987–1994) from WOCE and Pacific Marine Environmental Laboratory to calculate ages on σθ surfaces. Subduction rates were estimated from the inverse age gradient. The two subduction rate methods are independent, but they share a common identification of STUW formation area based on satellite-derived surface temperature maps. Using both methods, one can put bounds on the formation rates: 4–5 Sv in the North and 6–7 Sv in the South Pacific. The drifter calculated STUW subduction rates for 1988–1992 and 1992–1996 are 21 and 13 m/yr in the North Pacific and 25 and 40 m/yr in the South. The CFC-12 calculated STUW subduction rate in the North Pacific is 26 m/yr, and 32 m/yr in the South. The South Pacific rates exceed those in the North Pacific. Consistent differences between the two methods support earlier studies, they conclude that mixing contributes to STUW formation in addition to the larger-scale circulation effects. The drifter and tracer rates agree well quantitatively, within 22%, except for the second period in the North Pacific and there are some differences in spatial patterns. Tracer rates integrate over time, and drifters allow analysis of interannual variability. The decrease in subduction rate between periods in the North Pacific is due to negative lateral induction entraining STUW into the mixed layer. The increase in the South Pacific rate is due to an increase in the vertical pumping. Although Ekman pumping is in phase in the North and South, the subduction rate is out of phase. These results confirm that subduction depends on the large-scale circulation and a combination of the outcrop pattern and air–sea fluxes. Temporal differences in rates and partitioning between the hemispheres are consistent with interannual changes in gyre intensity and current positions. 相似文献
15.
16.
Michael R. Landry Susan L. Brown Yoshimi M. Rii Karen E. Selph Robert R. Bidigare Eun Jin Yang Melinda P. Simmons 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1348
As part of E-Flux III cruise studies in March 2005, we investigated phytoplankton community dynamics in a cyclonic cold-core eddy (Cyclone Opal) in the lee of the Hawaiian Islands. Experimental incubations were conducted under in situ temperature and light conditions on a drift array using a two-treatment dilution technique. Taxon-specific estimates of growth, grazing and production rates were obtained from analyses of incubation results based on phytoplankton pigments, flow cytometry and microscopy. Cyclone Opal was sampled at a biologically and physically mature state, with an 80–100 m doming of isopycnal surfaces in its central region and a deep biomass maximum of large diatoms. Depth-profile experimentation defined three main zones. The upper (mixed) zone (0–40 m), showed little compositional or biomass response to eddy nutrient enrichment, but growth, grazing and production rates were significantly enhanced in this layer relative to the ambient community outside of the eddy. Prochlorococcus spp. dominated the upper mixed layer, accounting for 50–60% of its estimated primary production both inside and outside of Opal. In contrast, the deep zone of 70–90 m showed little evidence of growth rate enhancement and was principally defined by a 100-fold increase of large (>20-μm) diatoms and a shift from Prochlorococcus to diatom dominance (80%) of production. The intermediate layer of 50–60 m marked the transition between the upper and lower extremes but also contained an elevated biomass of physiologically unhealthy diatoms with significantly depressed growth rates and proportionately greater grazing losses relative to diatoms above or below. Microzooplankton grazers consumed 58%, 65% and 55%, respectively, of the production of diatoms, Prochlorococcus and the total phytoplankton community in Cyclone Opal. The substantial grazing impact on diatoms suggests that efficient recycling was the major primary fate of diatom organic production, consistent with the low export fluxes and selective export of biogenic silica, as empty diatom frustules, in Cyclone Opal. 相似文献
17.
Tomohiro Nakamura Takahiro Toyoda Yoichi Ishikawa Toshiyuki Awaji 《Journal of Oceanography》2004,60(2):411-423
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K
1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause
intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity
(PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport
a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features
are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity
of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine
this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment
was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better
representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added
effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently
transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the
northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a
realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the
2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the
North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction
of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced
transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important
role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
2016年秋季热带西太平洋网采浮游植物群落结构 总被引:1,自引:0,他引:1
作者于2016年9月27日~10月25日对热带西太平洋(0°~20°N, 120°~130°E)10个站位的网采浮游植物群落结构进行了采样调查。应用Uterm?hl方法对调查海域浮游植物的物种组成、细胞丰度、优势物种以及群落多样性等相关生态特征进行了分析。希望为热带西太平洋提供一些基础的背景资料,为以后的研究奠定基础。结果表明, 鉴定出浮游植物共计4门、66属、243种(包括变种、变型), 含硅藻门(Bacillariophyta)34属、103种, 甲藻门(Pyrrophyta)28属、133种, 金藻门(Chrysophyta)2属、4种,蓝藻门(Cyanophyta)2属、3种。浮游植物细胞丰度1 965.573×103 细胞/m3 , 其中蓝藻的细胞丰度为1 945.169×103 细胞/m3 , 决定了浮游植物的分布格局, 占总细胞丰度的98.96%, 高值区分布在0°N130°E-10°N130°E的4个站位(E130-13、E130-15、E130-17、E130-19); 硅藻丰度在20°N断面N20-4站位存在高值区; 甲藻丰度在130°E断面的3个站位(E130-10、E130-13、E130-15)存在高值区。本次调查的优势种依次为铁氏束毛藻(Trichodesmium thiebaultii)、扁形原甲藻(Prorocentrum compressum)、扁豆原甲藻(Prorocentrum leniculatum)、胞内植生藻(Richelia intracellularis)、菱形海线藻(Thalassionema nitzschioides)、细弱海链藻(Thalassiosira subtilis)、具边线形圆筛藻(Coscinodiscus marginato-lineatus)、科氏角藻(Ceratium kofoidii)、鲁比膝沟藻(Gonyaulax lurbynaii)、中华半管藻(Hemiaulus sinensis)、霍氏半管藻(Hemiaulus hauckii)、小等刺硅鞭藻(Dictyocha fibula)。Shannon-Weiner多样性指数的均值为2.440,Pielou 均匀度指数的均值为0.163。相关分析结果显示浮游植物空间分布主要受PO4-P、NH4-N的影响,且由蓝藻的相关性决定的。聚类分析得出群落结构分为大洋群聚和近岸群聚两种类型(其中大洋群聚的站位又划分为0°~10°N纬度范围聚集和10°~20°N纬度范围聚集)。 相似文献
19.
Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans 总被引:1,自引:0,他引:1
Thomas S. Bibby Maxim Y. Gorbunov Kevin W. Wyman Paul G. Falkowski 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1310
In this paper we summarise the photo-physiological responses of phytoplankton to upwelling of macronutrients in mesoscale eddies in the subtropical North Atlantic (EDDIES project, Sargasso Sea) and subtropical North Pacific (E-FLUX project, Hawaii). The observations, obtained on two sets of cruises over 2 years, occupied six cyclonic eddies and two mode-water eddies. The photosynthetic physiological parameters were measured using a bench-top fluorescence induction and relaxation (FIRe) system and a submersible in situ fast repetition rate fluorometer (FRRF) deployed on an undulating towed vehicle. Both of these instruments were used to provide highly sensitive and well-resolved data on community responses. The responses are dependent on both the type of eddy and its stage of development. Our results indicate that, while cyclonic eddies in the Atlantic and Pacific can increase primary photosynthetic production early in their development, mode-water eddies in the subtropical North Atlantic can support patchy blooms of large diatoms for long periods of time (more than 3 months). 相似文献
20.
The carbon dioxide system and net community production within a cyclonic eddy in the lee of Hawaii 总被引:1,自引:0,他引:1
Feizhou Chen Wei-Jun Cai Yongchen Wang Yoshimi M. Rii Robert R. Bidigare Claudia R. Benitez-Nelson 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1412
The dynamics of dissolved inorganic carbon (DIC) and processes controlling net community production (NCP) were investigated within a mature cyclonic eddy, Cyclone Opal, which formed in the lee of the main Hawaiian Islands in the subtropical North Pacific Gyre. Within the eddy core, physical and biogeochemical properties suggested that nutrient- and DIC-rich deep waters were uplifted by 80 m relative to surrounding waters, enhancing biological production. A salt budget indicates that the eddy core was a mixture of deep water (68%) and surface water (32%). NCP was estimated from mass balances of DIC, nitrate+nitrite, total organic carbon, and dissolved organic nitrogen, making rational inferences about the unobserved initial conditions at the time of eddy formation. Results consistently suggest that NCP in the center of the eddy was substantially enhanced relative to the surrounding waters, ranging from 14.1±10.6 (0–110 m: within the euphotic zone) to 14.2±9.2 (0–50 m: within the mixed layer) to 18.5±10.7 (0–75 m: within the deep chlorophyll-maximum layer) mmol C m−2 d−1 depending on the depth of integration. NCP in the ambient waters outside the eddy averaged about 2.37±4.24 mmol C m−2 d−1 in the mixed layer (0–95 m). Most of the enhanced NCP inside the eddy appears to have accumulated as dissolved organic carbon (DOC) rather than exported as particulate organic carbon (POC) to the mesopelagic. Our results also suggest that the upper euphotic zone (0–75 m) above the deep chlorophyll maximum is characterized by positive NCP, while NCP in the lower layer (>75 m) is close to zero or negative. 相似文献