首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solar light field within the ocean from the sea surface to the bottom of the mesopelagic zone was simulated with a radiative transfer model that accounts for the presence of inelastic radiative processes associated with Raman scattering by water molecules, fluorescence of colored dissolved organic matter (CDOM), and fluorescence of chlorophyll-a contained in phytoplankton. The simulation results provide a comprehensive characterization of the ambient light field and apparent optical properties (AOPs) across the entire visible spectral range within the depth range 200–1000 m of the entire mesopelagic zone for varying chlorophyll-a concentration and seawater optical properties in the mixed surface layer of the ocean. With increasing depth in the mesopelagic zone, the solar irradiance is reduced by ~9–10 orders of magnitude and exhibits a major spectral maximum in the blue, typically centered around a light wavelength of 475 nm. In the green and red spectral regions, the light levels are significantly lower but still important owing to local generation of photons via inelastic processes, mostly Raman scattering and to a lesser extent CDOM fluorescence. The Raman scattering produces a distinct secondary maximum in irradiance spectra centered around 565 nm. Comparisons of our results with light produced by the radioactive decay of the unstable potassium isotope contained in sea salt (40K) indicates that the solar irradiance dominates over the 40K-produced irradiance within the majority of the mesopelagic zone for most scenarios considered in our simulations. The angular distribution of radiance indicates the dominance of downward propagation of light in the blue and approach to uniform distribution in the red throughout the mesopelagic zone. Below the approximate depth range 400–500 m, the shape of the angular distribution is nearly invariant with increasing depth in the green and red and varies weakly in the blue. The AOPs at any light wavelength also assume nearly constant values within the deeper portion of the mesopelagic zone. These results indicate that the mesopelagic light field reaches a nearly-asymptotic regime at depths exceeding ~400–500 m.  相似文献   

2.
Taxonomic composition and productivity of winter and spring phytoplankton in a eutrophic estuary have been investigated in order to elucidate the carbon flux under conditions of limitation by physical factors – light and temperature. In spite of the important differences in nutrients, solar radiation and water temperature between winter and spring season, mean concentrations of particulate organic carbon were equal to 13.2 and 13.0 mgC l−1, respectively. Chlorophyll a averaged at 79 μgChl l−1 in winter, that is 69% of spring. Although community respiration accounted for only 6–26% of light saturated photosynthesis, integrated net primary production of the 1.2 m deep water column was negative until April. High attenuation of the water body (Ko = 2.9 m−1) lead to a negative carbon balance (net heterotrophy) below 35 cm for all sampling dates. Thus, the high winter POC and phytoplankton values can only originate from summer or autumn primary production. This assumption was supported by a carbon loss rate of just 3% of total organic carbon per day for the whole water column. The composition of phytoplankton was very constant through both seasons: 39% Chlorophyceae, 33% Cyanobacteria and 25% Bacillariophyceae. As expected, phytoplankton was low light acclimated, having high α values (slope of light limited photosynthesis), but moderate maximum photosynthesis rates at saturating irradiances, which were heavily affected by temperature. Calculation of net carbon flux yet showed net heterotrophy of the Bodden waters in winter and early spring were caused by external physical limitation (low surface irradiance and low temperature) in combination with a high light attenuation of the water body.  相似文献   

3.
Iron has been shown to limit phytoplankton growth in high-nutrient low-chlorophyll (HNLC) regions such as the NE subarctic Pacific. We report size-fractionated Fe-uptake rates by the entire plankton community in short (6–8 h) light and dark incubations along an E–W transect from P04 (a coastal ocean station) to OSP (an open-ocean HNLC station) during August–September 1997. Size-fractionated primary productivity and chl a were measured to monitor algal Fe : C uptake ratios and Fe-uptake relative to phytoplankton biomass. The >5.0 μm size-class, which consisted mostly of large diatoms, had the highest Fe-uptake rate at nearshore stations (P04 and P8), but Fe-uptake rates for this size class decreased despite increases in biomass and primary productivity when transecting westwards to HNLC waters. Fe-uptake rates of the small size class (0.2–1.0 μm, including heterotrophic bacteria and autotrophs) were inversely related to the >5.0 μm size-class uptake rates, in that stations with high dissolved Fe (DFe) concentrations had relatively low uptake rates compared to those in the low-Fe offshore region. The 1.0–5.0 μm size-class Fe-uptake rates were low, relatively invariant along the transect, and differed little between light and dark incubations. Dark Fe-uptake rates averaged 10–20% less than those in the light for the >5.0 μm size class. Dark uptake rates however, were higher than light uptake rates for the 0.2–1.0 μm size class at all stations. Fe : C uptake ratios were high for all size classes at P04, but decreased as DFe concentrations decreased offshore. The prokaryote-dominated 0.2–1.0 μm size class had the highest Fe : C uptake ratios at all stations. These data suggest that prokaryotic organisms make an important contribution to biological Fe uptake in this region. Our experiments support the results of previous culture work, suggesting higher Fe : C ratios in coastal phytoplankton compared to open-ocean species, and demonstrate that light can have a large effect on Fe partitioning between size classes in subarctic Pacific HNLC waters.  相似文献   

4.
Surface distributions of nutrients and phytoplankton were investigated in the vicinity of the subtropical South Pacific islands by using a continuous underway system with a highly sensitive nutrient analysis. A total of 17 transects, whose lengths ranged between 42 and 271 km, were sampled for continuous nutrient measurements. The study area was characterized by an overall depletion of nitrate+nitrite (<15 nM), but phosphate varied from 7 to 192 nM. The transects were grouped into 4 patterns according to distribution of phosphate concentrations. In 7 transects, a mesoscale decrease in phosphate occurred, coinciding with an elevation of in vivo chlorophyll fluorescence, which was accompanied by an increase in phytoplankton abundance as revealed by microscopy, flow cytometry, and accessory pigments. This mirror–image relationship between the phosphate concentration and phytoplankton abundance was most apparent on both a 99-km transect east of Tonga, where the phosphate concentration ranged from 17 to 125 nM, and on a 98-km transect west of Fiji, where the phosphate concentration ranged from 23 to 136 nM. Both these transects contained distinct blooms of Trichodesmium in areas with the lowest concentrations of phosphate. In other 2 transects, fluctuations in phosphate concentrations showed no distinct relationship with chlorophyll fluorescence. Other patterns that emerged included consistently high concentrations, ranging from 109 to 192 nM, in 5 transects and consistently low phosphate concentrations, ranging from 7 to 50 nM, in 3 transects. Abundance of Trichodesmium, Prochlorococcus, Synechococcus, and all accessory pigments examined tended to be higher in the low phosphate transects than in the high phosphate ones. In particular, Trichodesmium occurred in low phosphate water (<25 nM). There was no significant relationship between phosphate concentrations and nanoplanktonic unicellular cyanobacteria. Our observations suggest that surface phosphate decreases are associated with phytoplankton utilization of phosphate, and that nitrogen supply from Trichodesmium may contributes to this utilization.  相似文献   

5.
Phytoplankton production was measured at the shelf edge region of the Celtic Sea in April/May 1994 at the beginning of the spring bloom. Size fractionated 14C uptake experiments showed that phytoplankton >2 μm dominated the bloom although, in the period immediately before the increase in phytoplankton biomass, picophytoplankton (<2 μm) was responsible for up to 42% of the production; in these late winter conditions, chlorophyll concentrations were generally <0.7 μg l-1 and primary production was ca. 70 mmol C m-2 d-1. As the spring bloom developed, phytoplankton production rates of 120 mmol C m-2 d-1 were measured. Chlorophyll concentration increased to >2 μg l-1 as a result of growth of larger phytoplankton, including diatoms, with large numbers of Nitzschia, Thalassionema and Chaetoceros dominating the assemblage. Picophytoplankton production declined as the spring bloom progressed. Nutrient concentrations were not depleted during the sampling period, and NO-3 concentrations were >6 μmol l-1. Nutrient assimilation rates were measured at the same time as primary production was estimated. Before the development of any substantial phytoplankton biomass, the uptake rates for ammonium and nitrate were very similar, with f-ratios ranging from 0.5 to 0.6. Assimilation of ammonium remained relatively constant after the onset of stratification and bloom development, but nitrate uptake increased by a factor of 2 or more, resulting in f-ratios >0.8. There was significant phosphate uptake in the dark, which was generally ca. 50% of the rate in the light. The C : N : P assimilation ratios changed as the bloom developed; in the pre-bloom situation, when small phytoplankton cells dominated the assemblage, the C : N assimilation ratio was variable, with some stations having ratios less than (ca 2.5), and some higher than (ca. 9), the Redfield ratio. The most actively growing assemblages had N : P ratios close to the Redfield ratio, but the C : N ratios were consistently lower. New production was found to be closely correlated with the size of the species making up the phytoplankton assemblage, and high f ratios were measured when larger phytoplankton dominated the assemblage.  相似文献   

6.
The copepods Neocalanus flemingeri and N. plumchrus are major components of the mesozooplankton on the shelf of the Gulf of Alaska, where they feed, grow and develop during April–June, the period encompassing the spring phytoplankton bloom. Satellite imagery indicates high mesoscale variability in phytoplankton concentration during this time. Because copepod ingestion is related to food concentration, we hypothesized that phytoplankton ingestion by N. flemingeri and N. plumchrus would vary in response to mesoscale variability of phytoplankton. We proposed that copepods on the inner shelf, where the phytoplankton bloom is most pronounced, would be larger and have more lipid stores than animals collected from the outer shelf, where phytoplankton concentrations are typically low. Shipboard feeding experiments with both copepods were done in spring of 2001 and 2003 using natural water as food medium. Chlorophyll concentration ranged widely, between 0.32 and 11.44 μg l−1 and ingestion rates varied accordingly, between 6.0 and 627.0 ng chl cop−1 d−1. At chlorophyll concentrations<0.50 μg l−1, ingestion is always low, <40 ng cop−1 d−1. Intermediate ingestion rates were observed at chlorophyll concentrations between 0.5 and 1.5 μg l−1, and maximum rates at chlorophyll concentrations>1.5 μg l−1. Application of these feeding rates to the phytoplankton distribution on the shelf allowed locations and time periods of low, intermediate and high daily feeding to be calculated for 2001 and 2003. A detailed cross-shelf survey of body size and lipid store in these copepods, however, indicated they were indistinguishable regardless of collection site. Although the daily ingestion of phytoplankton by N. flemingeri and N. plumchrus varied widely because of mesoscale variability in phytoplankton, these daily differences did not result in differences in final body size or lipid storage of these copepods. These copepods efficiently dealt with small and mesoscale variations in their food environment such that mesoscale structure in phytoplankton did not affect their final body size.  相似文献   

7.
As part of the KErguelen: compared study of the Ocean and the Plateau in Surface water (KEOPS) project in late summer 2005, we examine the phytoplankton community composition and associated primary production in the waters surrounding the Kerguelen Archipelago, with the emphasis on two contrasted environments: (i) the Kerguelen Plateau, where a large bloom occurs annually, and (ii) the high-nutrient low-chlorophyll (HNLC) offshore waters. A biomarker pigment approach was used to assess the community composition in terms of chlorophyll biomass of three phytoplankton size classes, namely micro-, nano-, and picophytoplankton. The second objective was to evaluate a global class-specific approach for estimating the contribution of the three pigment-based size classes to the primary production in the study area. To do so, primary production rates associated with each phytoplankton class were computed from the class-specific chlorophyll biomass coupled to a class-specific primary production model, and compared with in situ measurements of size-fractionated 13C-based primary production. The iron-enriched bloom region was dominated by microphytoplankton (diatoms), which contributed 80–90% to the total primary production (of ≈1 g C m?2 d?1). In the HNLC area, the primary production was about 0.30 g C m?2 d?1, mainly (65%) achieved by small diatoms and nanoflagellates. The model results show a good overall agreement between predicted and measured total primary production rates. In terms of size classes, agreements were higher for the bloom region than for the HNLC waters. Discrepancies in this complex iron-limited area may be explained essentially by the smaller size of diatoms, or a different set of photophysiological properties.  相似文献   

8.
The Sea of Okhotsk is one of the most productive marine basins in the world ocean and plays an important role in transport of organic carbon and iron to the western subarctic Pacific. We report the first measurements of phytoplankton growth and microzooplankton grazing rates in the Sea of Okhotsk, in late summer of 2006. The study area can be divided into two areas: nutrient-sufficient waters on the continental shelf along the east coast of Sakhalin Island and in the vicinity of Bussol Strait, and surface nutrient-depleted waters beyond the shelf break and in the vicinity of Sakhalin Bay. Phytoplankton growth rate in the studied area was strongly affected by nutrient availability, with high phytoplankton growth rate (0.55±0.14 d?1) in the nutrient-replete region and severely depressed growth (0.03±0.05 d?1) in the nutrient-depleted region. On the other hand, microzooplankton grazing rates in both the nutrient-replete and nutrient-depleted regions were approximately the same (0.26±0.20 d?1 vs. 0.27±0.24 d?1). Consequently, microzooplankton grazing consumed <50% of the phytoplankton growth in nutrient-rich waters but >3 times the phytoplankton growth in nutrient-depleted waters. Phytoplankton physiological condition as measured by the maximum photochemical quantum efficiency (Fv/Fm) of algal photosystem II (PS II) showed a general trend in agreement with the in situ growth rate of phytoplankton. In contrast to the phytoplankton community, picophytoplankton, especially the cyanobacteria Synechococcus, showed no nutrient effect on their growth, and the growth and mortality rates were well balanced, suggesting that they have a low nutrient requirement and their biomass was controlled principally by microzooplankton grazing.  相似文献   

9.
Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5–20, 20–200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5–20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63–5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

10.
The Drake Passage region near Elephant Island in the Southern Ocean displays patchy phytoplankton blooms. To test the hypothesis that natural Fe addition from localized sources promoted phytoplankton growth here, a grid of stations (59°S to 62°S, 59°W to 53°W, as well as four stations in the eastern Bransfield Strait) were occupied from 12 February–24 March 2004. Phytoplankton abundance was measured using shipboard flow cytometry (70 stations), with abundances conservatively converted to biomass, and compared with measurements of dissolved iron (dFe) at a subset of stations (30 stations). Based on T–S property plots, stations were divided into Antarctic Circumpolar Current (ACC), Water On Shelf (WOS), Bransfield Strait (BS), and Mixed water stations, the latter representing locations with T–S properties intermediate between ACC and WOS stations. The highest integrated phytoplankton biomass was found at Mixed water stations, however, the highest integrated abundance was found at WOS stations, demonstrating that abundance and biomass do not necessarily show the same patterns. The distributions of nano- and micro-phytoplankton (<20 and >20 μm diameter cells, respectively) were also examined, with nano- and micro-plankton contributing equally to the total biomass at WOS and BS stations, but micro-plankton representing ∼2/3 of the biomass at Mixed and ACC stations. Increased inventories of dFe did not always correspond to increases in phytoplankton biomass – rather stations with lower mean light levels in the mixed layer (<110 μEinsteins m−2 s−1) had lower biomass despite higher ambient dFe concentrations. However, where the mean light levels in the mixed layer were >110 μEinsteins m−2 s−1, total biomass shows a positive trend with dFe, as does micro-phytoplankton biomass, but neither regression is significant at the 95% level. In contrast, if just nano-phytoplankton biomass is considered as a function of dFe, there is a significant correlation (r2=0.62). These data suggest a dual mechanism for the patterns observed in biomass: an increasing reservoir of dFe allows increased phytoplankton biomass, but biomass can only accumulate where the light levels are relatively high, such that light is not limiting to growth.  相似文献   

11.
Continuous surface measurements of temperature, salinity, fluorescence and optical backscattering were made during R/V Thompson cruise no. TN053 in the northern Arabian Sea (“Bio-Optical cruise”; October–November, 1995). The cruise covered the early NE monsoon period. Optical measurements involved alternate estimates of total backscattering and acidified backscattering approximately every 1.5–2 min (measured after addition of a weak acid to dissolve calcium carbonate). The difference between total and acidified backscattering equals “acid-labile backscattering”. Total and acid-labile backscattering were converted to the concentration of particulate organic carbon (POC) and particulate inorganic carbon (PIC; calcium carbonate), respectively, and discrete samples taken along the cruise track were used for calibration. Backscattering data were frequently coherent with temperature, salinity, and density variability. Acid-labile backscattering values revealed that calcium carbonate accounted for 10–40% of the total optical backscattering in the region, and the semi-continuous records demonstrated distinct patches of coccolith-rich water. The northern Arabian Sea had the highest acid-labile backscattering. Results suggest that PIC : POC ratios can vary over about four orders of magnitude. Highest surface values of PIC : POC approached one in several places. We also report qualitative observations of phytoplankton community structure made aboard ship, on fresh samples.  相似文献   

12.
An outstanding problem in fisheries acoustics is the depth dependence of scattering characteristics of swimbladder-bearing fish, and the effects of pressure on the target strength of physoclistous fish remain unresolved. In situ echoes from deepwater snappers were obtained with a sonar transducer mounted on a manned submersible next to a low-light video camera, permitting simultaneous echo recording and identification of species, fish size and orientation. The sonar system, consisting of a transducer, single board computer, hard disk, and analog-to-digital converter, used a 80 μs, broadband signal (bandwidth 35 kHz, center frequency 120 kHz). The observed relationship between fish length and in situ target strength shows no difference from the relationship measured at the surface. No differences in the species-specific temporal echo characteristics were observed between surface and in situ measures. This indicates that the size and shape of the snappers’ swimbladders are maintained both at the surface and at depths of up to 250 m. Information obtained through controlled backscatter measurements of tethered, anesthetized fish at the surface can be applied to free-swimming fish at depth. This is the first published account of the use of a manned submersible to measure in situ scattering from identified, individual animals with known orientations. The distinct advantage of this technique compared with other in situ techniques is the ability to observe the target fish, obtaining accurate species, size, and orientation information.  相似文献   

13.
Phytoplankton community structure is expected to shift to larger cells (e.g., diatoms) with monsoonal forcing in the Arabian Sea, but recent studies suggest that small primary producers remain active and important, even in areas strongly influenced by coastal upwelling. To better understand the role of smaller phytoplankton in such systems, we investigated growth and grazing rates of picophytoplankton populations and their contributions to phytoplankton community biomass and primary productivity during the 1995 Southwest Monsoon (August–September). Environmental conditions at six study stations varied broadly from open-ocean oligotrophic to coastal eutrophic, with mixed-layer nitrate and chlorophyll concentrations ranging from 0.01 to 11.5 μM NO3 and 0.16 to 1.5 μg Chl a. Picophytoplankton comprised up to 92% of phytoplankton carbon at the oceanic stations, 35% in the diatom-dominated coastal zone, and 26% in a declining Phaeocystis bloom. Concurrent in situ dilution and 14C-uptake experiments gave comparable ranges of community growth rates (0.53–1.05 d−1 and 0.44–1.17 d−1, to the 1% light level), but uncertainties in C:Chl a confounded agreement at individual stations. Microzooplankton grazing utilized 81% of community phytoplankton growth at the oligotrophic stations and 54% at high-nutrient coastal stations. Prochlorococcus (PRO) was present at two oligotrophic stations, where its maximum growth approached 1.4 d−1 (two doublings per day) and depth-integrated growth varied from 0.2 to 0.8 d−1. Synechococcus (SYN) growth ranged from 0.5 to 1.1 d−1 at offshore stations and 0.6 to 0.7 d−1 at coastal sites. Except for the most oligotrophic stations, growth rates of picoeukaryotic algae (PEUK) exceeded PRO and SYN, reaching 1.3 d−1 offshore and decreasing to 0.8 d−1 at the most coastal station. Microzooplankton grazing impact averaged 90, 70, and 86% of growth for PRO, SYN, and PEUK, respectively. Picoplankton as a group accounted for 64% of estimated gross carbon production for all stations, and 50% at high-nutrient, upwelling stations. Prokaryotes (PRO and SYN) contributed disproportionately to production relative to biomass at the most oligotrophic station, while PEUK were more important at the coastal stations. Even during intense monsoonal forcing in the Arabian Sea, picoeukaryotic algae appear to account for a large portion of primary production in the coastal upwelling regions, supporting an active community of protistan grazers and a high rate of carbon cycling in these areas.  相似文献   

14.
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf.  相似文献   

15.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

16.
Temporal changes in the abundance, community composition, and photosynthetic physiology of phytoplankton in surface waters were investigated during the second in situ iron (Fe) fertilization experiment in the NW subarctic Pacific (SEEDS-II). Surface chlorophyll a concentration was 0.75 mg m−3 on the day before the first Fe enrichment (i.e. Day 0), increased ca. 3-fold until Day 13 after two Fe additions, and thereafter declined with time. The photochemical quantum efficiency (Fv/Fm) and functional absorption cross-section (σPSII) of photosystem II for total phytoplankton in surface waters increased and decreased inside the Fe-enriched patch through Day 13, respectively. These results indicate that the photosynthetic physiological condition of the phytoplankton improved after the Fe infusions. However, the maximum Fv/Fm value of 0.43 and the maximum quantum yield of carbon fixation (φmax) of 0.041 mol C (mol photon)−1 during the development phase of the bloom were rather low, compared to their theoretical maximum of ca. 0.65 and 0.10 mol C (mol photon)−1, respectively. Diatoms, which were mainly composed of oceanic species, did not bloom, and autotrophic nanoflagellates such as cryptophytes and prasinophytes became predominant in the phytoplankton community inside the Fe-enriched patch. In ferredoxin/flavodoxin assays for micro-sized (20–200 μm in cell length) diatoms, ferredoxin was not detected but flavodoxin expressions consistently occurred with similar levels both inside and outside the Fe-enriched patch, indicating that the large-sized diatoms were stressed by Fe bioavailability inside the Fe-enriched patch even after the Fe enrichments. Our data suggest that the absence of a Fe-induced large-sized diatom bloom could be partly due to their Fe stress throughout SEEDS-II.  相似文献   

17.
The often-rapid deposition of phytoplankton to sediments at the end of the spring phytoplankton bloom is an important component of benthic–pelagic coupling in temperate and high latitude estuaries and other aquatic systems. However, quantifying the flux is difficult, particularly in spatially heterogeneous environments. Surficial sediment chlorophyll-a, which can be measured quickly at many locations, has been used effectively by previous studies as an indicator of phytoplankton deposition to estuarine sediments. In this study, surficial sediment chlorophyll-a was quantified in late spring at 20–50 locations throughout Chesapeake Bay for 8 years (1993–2000). A model was developed to estimate chlorophyll-a deposition to sediments using these measurements, while accounting for chlorophyll-a degradation during the time between deposition and sampling. Carbon flux was derived from these estimates via C:chl-a = 75.Bay-wide, the accumulation of chlorophyll-a on sediments by late spring averaged 171 mg m−2, from which the chlorophyll-a and carbon sinking fluxes, respectively, were estimated to be 353 mg m−2 and 26.5 gC m−2. These deposition estimates were ∼50% of estimates based on a sediment trap study in the mid-Bay. During 1993–2000, the highest average chlorophyll-a flux was in the mid-Bay (248 mg m−2), while the lowest was in the lower Bay (191 mg m−2). Winter–spring average river flow was positively correlated with phytoplankton biomass in the lower Bay water column, while phytoplankton biomass in that same region of the Bay was correlated with increased chlorophyll-a deposition to sediments. Responses in other regions of the Bay were less clear and suggested that the concept that nutrient enrichment in high flow years leads to greater phytoplankton deposition to sediments may be an oversimplification. A comparison of the carbon flux associated with the deposition of the spring bloom with annual benthic carbon budgets indicated that the spring bloom did not contribute a disproportionately large fraction of annual carbon inputs to Chesapeake Bay sediments. Regional patterns in chlorophyll-a deposition did not correspond with the strong regional patterns that have been found for plankton net community metabolism during spring.  相似文献   

18.
IronEx I demonstrated a rapid and marked response by grazers to Fe-induced increases in phytoplankton stocks, which was thought to be due, in part, to arrested vertical migration by mesozooplankton. These observations prompted an investigation of the relative roles of Fe enrichment and grazing pressure in controlling the magnitude of phytoplankton stocks in the NE subarctic Pacific. The grazing impact of increased mesozooplankton abundance in response to a localised Fe-induced enhancement of algal biomass was simulated by performing in vitro (6 d) grazer perturbation experiments in May 1994 and September 1995 at Ocean Station Papa (OSP), when pelagic mesozooplankton stocks are usually at their annual maximum and submaximal, respectively. Manipulations were designed to increase mesozooplankton stocks in 25L carboys after various lag-times corresponding to grazing pressure greater or equal to that in situ, and to monitor changes in chlorophyll a levels as a proxy for grazing pressure. At the onset of the experiments, in vitro mesozooplankton abundances were comparable to those in situ. Despite the addition of mesozooplankton to selected Fe-enriched carboys in May after 24, 48 and 72 h, corresponding to ca. two-fold increases in their abundances, chlorophyll a increased to ca. 2 μg l−1 in all treatments. In September, chlorophyll a levels increased five-fold to 2 μg l−1 after 4 days – but little thereafter – in the presence of up to ten-fold higher animal abundances (added at t=0) than observed in situ. Thus, Fe-induced increases in diatom growth rates were sufficiently high to escape both initial and additional grazing pressure. If and when Fe is supplied to this region, it is unlikely that mesozooplankton can respond and graze down the resulting elevated algal abundance. Theoretical calculations, based on algal growth and grazing rate data from May in this study, suggested that a greater than five-fold increase in mesozooplankton abundance, after a 48-h lag, is required to exert sufficient grazing pressure to prevent Fe-mediated increases in algal biomass. These findings are discussed in relation to the scale dependency of such events, and the pelagic ecology of other High Nitrate Low Chlorophyll regions.  相似文献   

19.
《Journal of Sea Research》2000,43(2):113-119
The distribution of phytoplankton was measured in vertical profiles at three stations in Limfjorden (Denmark) within and above Mytilus edulis beds (−5 to 200 cm above the bed surface) and related to the filtration capacity of the mussels and hydrodynamic conditions. The density of phytoplankton was 2690 to 10 600 cells cm−3 at 200 cm above the bottom (∼1.4 to 3.2 mg Chl-a m−3), declining towards the bottom to about 1000 cells cm−3 at two of the stations. This is a threshold of minimum algal concentration below which mussels are reported to stop feeding. The results of the present study further demonstrate that the near-bed phytoplankton concentrations observed in the field often remained below the concentration level at which mussels reduce their maximal filtration activity.  相似文献   

20.
The responses of larger (>50 μm in diameter) protozooplankton groups to a phytoplankton bloom induced by in situ iron fertilization (EisenEx) in the Polar Frontal Zone (PFZ) of the Southern Ocean in austral spring are presented. During the 21 days of the experiment, samples were collected from seven discrete depths in the upper 150 m inside and outside the fertilized patch for the enumeration of acantharia, foraminifera, radiolaria, heliozoa, tintinnid ciliates and aplastidic thecate dinoflagellates. Inside the patch, acantharian numbers increased twofold, but only negligibly in surrounding waters. This finding is of major interest, since acantharia are suggested to be involved in the formation of barite (BaSO4), a palaeoindicator of both ancient and modern high-productivity regimes. Foraminifera increased significantly in abundance inside and outside the fertilized patch. However, the marked increase of juveniles after a full-moon event suggests a lunar periodicity in the reproduction cycle of some foraminiferan species rather than a reproductive response to enhanced food availability. In contrast, adult radiolaria showed no clear trend during the experiment, but juveniles increased threefold, indicating elevated reproduction. Aplastidic thecate dinoflagellates almost doubled in numbers and biomass but also increased outside the patch. Tintinnid numbers decreased twofold, although biomass remained constant because of a shift in the size spectrum. Empty tintinnid loricae, however, increased by a factor of two, indicating that grazing pressure on this group mainly by copepods, intensified during EisenEx. The results show that iron-fertilization experiments can shed light on the biology and the role of these larger protists in pelagic ecosystem, which will improve their use as proxies in paleoceanography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号