首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple dissolved silica (Si) and dissolved oxygen (O) diagram method was applied to study the deep-water circulation in the North Pacific and the following results and conclusion have been obtained. In the abyssal water flowing northward in the western Pacific Si increases with a constant ratio of Si to decreasing O(Si/O=–0.30). The water is designated as the main sequence. In the eastern Pacific the Si-O diagram is characteristic of the location and reflects the degrees of mixing with older waters and of alteration due to decomposition of biogenic material. The Bay of Alaska is found to be a great source of silica in the North Pacific and its bottom water spreads out to the central North Pacific north of 40°N, called here the abyssal front. The younger abyssal water in the Aleutian Trench flowing to the eastern North Pacific north of 40°N comes through the north end of the Kuril-Kamchatka Trench instead of the gap in the Emperor Seamounts at about 46°N. The deep water is almost completely homogenized by active isopycnal mixing and advection when the deep water reaches its upper boundary by upwelling in the western North Pacific including the Bering Sea. Thus the high productivity in the Bering Sea is principally caused neither by the direct supply of abyssal water rich in nutrients nor by the extremely active vertical mixing reaching depths greater than 500 m, but it may be caused simply by the shallower upper boundary of the deep water mass in the Bering Sea, from which nutrients are easily transported to the surface.  相似文献   

2.
Deep-circulation flow at mid-latitude in the western North Pacific   总被引:1,自引:1,他引:1  
Direct current measurements with five moorings at 27–35°N, 165°E from 1991 to 1993 and with one mooring at 27°N, 167°E from 1989 to 1991 revealed temporal variations of deep flow at mid-latitude in the western North Pacific. The deep-circulation flow carrying the Lower Circumpolar Deep Water from the Southern Ocean passed 33°N, 165°E northwestward with a high mean velocity of 7.8 cm s−1 near the bottom and was stable enough to continue for 4–6 months between interruptions of 1- or 2-months duration. The deep-circulation flow expanded or shifted intermittently to the mooring at 31°N, 165°E but did not reach 35°N, 165°E although it shifted northward. The deep-circulation flow was not detected at the other four moorings, whereas meso-scale eddy variations were prominent at all the moorings, particularly at 35°N and 29°N, 165°E. The characteristics of current velocity and dissolved oxygen distributions led us to conclude that the deep-circulation flow takes a cyclonic pathway after passing through Wake Island Passage, passing 24°N, 169.5–173°E and 30°N, 168–169°E northward, proceeds northwestward around 33°N, 165°E, and goes westward through the south of the Shatsky Rise. We did not find that the deep-circulation flow proceeded westward along the northern side of the Mid-Pacific Seamounts and eastward between the Hess Rise and the Hawaiian Ridge toward the Northeast Pacific Basin.  相似文献   

3.
利用美国国家环境预报中心(NCEP)的长时间序列(1983—2012年)海流再分析资料,对北太平洋低纬度西边界流的表层分布特征、流量月变化特征及其之间的相关性进行了初步分析。结果表明:北太平洋低纬度西边界流具有明显的季节变化特征,在位置变化上表现出夏季北移,冬季南移的特征;在流速变化上表现出夏强冬弱的特征;在流量运输上表现出NEC、KC和MC的春夏季节流量运输大于秋冬季节的流量运输,而NECC则相反的特征。另外,从各海流与NEC的相关性分析上看,NEC与KC、MC为正相关,与NECC为负相关。  相似文献   

4.
Methane in the western North Pacific   总被引:7,自引:0,他引:7  
The concentration of methane in about 400 seawater samples collected in the western North Pacific, mostly from 40°N to 5°S along 165°E was determined. While the concentration of methane in the surface water was slightly greater in the high-latitudes, it did not widely vary with a standard deviation of 0.29 n mol/l for a mean value of 2.49 n mol/l. The 90% confidence limit of the mean was 0.08 n mol/l. The degree of oversaturation in 1991 (31±4%) was not different from that in circa 1970. If we assume that this degree of oversaturation occurs in the entire oceans, the annual flux of methane becomes 6×1012g CH4. Both the concentrations of methane and chlorophylla were higher in the surface 100 m layer. However, the correlation between them was not well in the entire surface waters. This may indicate that the production of methane is not directly related to the photosynthetic process. The concentration of methane decreased gradually with increasing depth down to 1000 m. Its horizontally and vertically uniform concentration in the abyssal water suggests that the turnover time of methane in the oxic pelagic water is in the range between a few years and a few hundred years.  相似文献   

5.
Direct velocity measurements undertaken using a nine-system mooring array (M1–M9) from 2004 to 2005 and two additional moorings (M7p and M8p) from 2003 to 2004 reveal the spatial and temporal properties of the deep-circulation currents southwest of the Shatsky Rise in the western North Pacific. The western branch of the deep-circulation current flowing northwestward (270–10° T) is detected almost exclusively at M2 (26°15′N), northeast of the Ogasawara Plateau. It has a width less than the 190 km distance between M1 (25°42′N) and M3 (26°48′N). The mean current speed near the bottom at M2 is 3.6±1.3 cm s?1. The eastern branch of the deep-circulation current is located at the southwestern slope of the Shatsky Rise, flowing northwestward mainly at M8 (30°48′N) on the lower part of the slope of the Shatsky Rise with a mean near-bottom speed of 5.3±1.4 cm s?1. The eastern branch often expands to M7 (30°19′N) at the foot of the rise with a mean near-bottom speed of 2.8±0.7 cm s?1 and to M9 (31°13′N) on the middle of the slope of the rise with a speed of 2.5±0.7 cm s?1 (nearly 4000 m depth); it infrequently expands furthermore to M6 (29°33′N). The width of the eastern branch is 201±70 km on average, exceeding that of the western branch. Temporal variations of the volume transports of the western and eastern branches consist of dominant variations with periods of 3 months and 1 month, varying between almost zero and significant amount; the 3-month-period variations are significantly coherent to each other with a phase lag of about 1 month for the western branch. The almost zero volume transport occurs at intervals of 2–4 months. In the eastern branch, volume transport increases with not only cross-sectional average current velocity but also current width. Because the current meters were too widely spaced to enable accurate estimates of volume transport, mean volume transport is overestimated by a factor of nearly two, yielding values of 4.1±1.2 and 9.8±1.8 Sv (1 Sv=106 m3 s?1) for the western and eastern branches, respectively. In addition, a northwestward current near the bottom at M4 (27°55′N) shows a marked variation in speed between 0 and 20 cm s?1 with a period of 45 days. This current may be part of a clockwise eddy around a seamount located immediately east of M4.  相似文献   

6.
Chlorofluorocarbons (CFC-11 and CFC-12) in the intermediate water having between 26.4 and 27.2 were determined at 75 stations in the western North Pacific north of 20°N and west of 175.5°E in 1993. The intermediate water of 26.4–26.6 was almost saturated with respect to the present atmospheric CFC-11 in the zone between 35 and 45°N around the subarctic front. Furthermore, the ratios of CFC-11/CFC-12 of the water were also of those formed after 1975. These suggest that the upper intermediate water (26.4–26.6) was recently formed by cooling and sinking of the surface water not by mixing with old waters. The water below the isopycnal surface of 26.8 contained less CFCs and the area containing higher CFCs around the subarctic front was greatly reduced. However, the CFC age of the lower intermediate water (26.8–27.2) in the zone around the subarctic front was not old, suggesting that the water was formed by diapycnal mixing of the water ventilated with the atmosphere with old waters not containing appreciable CFCs, probably the Pacific Deep Water. The southward spreading rate decreased with depth and it was one sixth of its eastward spreading rate of the North Pacific Intermediate Water (NPIW).  相似文献   

7.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

8.
The temporal variation of the total dissolved inorganic carbon (DIC) content in the western North Pacific is investigated by comparing the DIC distribution obtained from the data sets of three different periods, the GEOSECS data observed in 1973, the CO2 dynamics Cruise data observed in 1982, and recent Japanese data sets observed during the early 1990s. The overall feature of the signal of temporal DIC change during 1973 and early 1990s agreed with that of former studies, and did not significantly change with the calculation scheme (the grid-selection method vs. the multiple regression method). The observed increase in DIC among the different time scales showed a good inner consistency, which also indicates the stability of the method used in the DIC change calculation. The apparent rate of increase of the DIC inventory in the upper 1000 m water column, however, differed significantly by the data set used for the calculation: It was 5.6±2.4 g C/m2/year, based on the data comparison between 1982 and the early 1990s, while it became 7.6±2.4 g C/m2/year when based on the data between 1973 and the early 1990s. This result provides us an information about the data-dependency on the former estimation of temporal DIC change.  相似文献   

9.
Examined here is a hypothetical idea of the splitting of the subtropical gyre in the western North Pacific on the basis of two independent sources of data,i.e., the long-term mean geopotential-anomaly data compiled by the Japanese Oceanographic Data Center and the synoptic hydrographic (STD) data taken by the Hakuho Maru in the source region of the Kuroshio and the Subtropical Countercurrent in the period February and March 1974. Both of the synoptic and the long-term mean dynamic-topographic maps reveal three major ridges, which indicate that the western subtropical gyre is split into three subgyres. Each subgyre is made up of the pair of currents, the Kuroshio and the Kuroshio Countercurrent, the Subtropical Countercurrent and a westward flow lying just south of the Countercurrent (18°N–21°N), and the northern part of the North Fquatorial Current and an eastward flow at around 18°N. The subgyres are more or less composed of a train of anticyclonic eddies with meridional scales of between 300 and 600 km, so that the volume transport of the subgyres varies by a factor of two or more from section to section. The upper-water characteristics also support the splitting of the subtropical gyre; the water characteristics are fairly uniform within each subgyre, but markedly different between them. The northern rim of each subgyre appears as a sharp density front accompanied by an eastward flow. The bifurcations of the sharp density fronts across the western boundary current indicate that the major part of the surface waters in the North Equatorial Countercurrent is not brought into the Kuroshio. The western boundary current appears as a continuous feature of high speed, but the waters transported change discontinuously at some places.  相似文献   

10.
We have compiled carbonate chemistry and sedimentary CaCO3% data for the deep-waters (>1500 m water depth) of the southwest (SW) Pacific region. The complex topography in the SW Pacific influences the deep-water circulation and affects the carbonate ion concentration ([CO32−]), and the associated calcite saturation horizon (CSH, where ??calcite=1). The Tasman Basin and the southeast (SE) New Zealand region have the deepest CSH at ∼3100 m, primarily influenced by middle and lower Circumpolar Deep Waters (m or lCPDW), while to the northeast of New Zealand the CSH is ∼2800 m, due to the corrosive influence of the old North Pacific deep waters (NPDW) on the upper CPDW (uCPDW). The carbonate compensation depth (CCD; defined by a sedimentary CaCO3 content of <20%), also varies between the basins in the SW Pacific. The CCD is ∼4600 m to the SE New Zealand, but only ∼4000 m to the NE New Zealand. The CaCO3 content of the sediment, however, can be influenced by a number of different factors other than dissolution; therefore, we suggest using the water chemistry to estimate the CCD. The depth difference between the CSH and CCD (??ZCSH−CCD), however, varies considerably in this region and globally. The global ??ZCSH−CCD appears to expand with increase in age of the deep-water, resulting from a shoaling of the CSH. In contrast the depth of the chemical lysocline (??calcite=0.8) is less variable globally and is relatively similar, or close, to the CCD determined from the sedimentary CaCO3%. Geochemical definitions of the CCD, however, cannot be used to determine changes in the paleo-CCD. For the given range of factors that influence the sedimentary CaCO3%, an independent dissolution proxy, such as the foraminifera fragmentation % (>40%=foraminiferal lysocline) is required to define a depth where significant CaCO3 dissolution has occurred back through time. The current foraminiferal lysocline for the SW Pacific region ranges from 3100-3500 m, which is predictably just slightly deeper than the CSH. This compilation of sediment and water chemistry data provides a CaCO3 dataset for the present SW Pacific for comparison with glacial/interglacial CaCO3 variations in deep-water sediment cores, and to monitor future changes in [CO32−] and dissolution of sedimentary CaCO3 resulting from increasing anthropogenic CO2.  相似文献   

11.
A set of simultaneous long-term, deep current measurements was taken using a moored array in the mid-ocean of the western North Pacific near 30°N, 146°E. Five current meters at three stations provided good quality records over 84 days. Low-frequency current fluctuations with meridional dominance are clearly seen in the deep layer records. They are consistent with signals of a mesoscale current fluctuation which has a period of about 100 days, an east-west wave length of about 200 km, and a westward phase propagation with a speed of about 2 cm sec–1. Bottom intensification of the east component of low-frequency current fluctuations is also observed.  相似文献   

12.
Marine aerosols in the western North Pacific were collected using a cascade impactor. Size-separated aerosols were analyzed for organic carbon, alkanes and polycyclic aromatic hydrocarbons (PAH). The results showed that the rate of decrease of the atmospheric concentrations of these organic components with increase in distance from Japan as well as from the coast of the Eurasian Continent was in the order PAHalkanes>organic carbon. The bulk of all these organic components occurred in the smallest size fraction of particles (<1m). Analysis of the alkanes and PAH indicated that the hydrocarbons in aerosols in Japanese coastal marine areas are primarily derived from terrestrial anthropogenic sources which also contribute to a lesser extent to aerosols in marine areas about 1,000 km off the coast of Japan. In remote marine areas the hydrocarbons on small particles (<1m) have principally a natural terrestrial origin while those on larger particles are marine in origin.  相似文献   

13.
The downward short- and long-wave radiation fluxes at the sea surface (S, L) were measured aboard the R/VHakuho Maru, University of Tokyo, for the period of 117 days on six cruises from 1981 to 1985 in the western North Pacific near Japan. The upward fluxes of short- and long-wave radiation (S, L) were calculated by Payne's (1972) table and the Stefan-Boltzmann's law, respectively. The sensible and laten heat fluxes (Q h ,Q e ) were also estimated from an aerodynamic bulk method.From April to August, the daily mean value ofS varied with the amplitude of 100200 Wm–2. The value ofS was estimated approximately 6% ofS in all seasons. The difference betweenL andL was so small that the net radiation flux (Q n ) was dominated byS. In addition, the net heat flux at the sea surface was also dominated byS due to small values ofQ h andQ e , and then the ocean was warmed at the rate of 111 Wm–2 in April and 63 Wm–2 in August in the Oyashio Area, and 132 Wm–2 in May and 164 Wm–2 in June in the Kuroshio Area, respectively.From September to March, a remarkable negative correlation between the day to day variation ofS and that ofL was observed except when an intense cold air outbreak occurred. It was found that the correlation was caused by the cloud climatological feature of the western North Pacific in this period.S was not a dominant factor in the net heat flux. The value ofQ h +Q e in the Kuroshio Area ranged from 260 Wm–2 to 630 Wm–2, much larger thanQ n which ranged from –8 Wm–2 to 92 Wm–2 in the leg mean values (each leg period was about 10 days). Then the ocean was cooled at the rate of –160–620 Wm–2 during this period. The net heat flux in the Kuroshio Area averaged over five legs from late November to February was –473 Wm–2. This value is 50100% larger than the climatological values reported so far.The temporal and spatial variability of radiation fluxes and heat fluxes during each leg was also discussed.  相似文献   

14.
Five moorings ML1–ML5 were deployed on the slope of the Solomon Rise in the Melanesian Basin in the western North Pacific, northeastward at increasing water depths. We measured the velocities of the western branch current of the deep western boundary current (DWBC) and the upper deep current carrying the Lower and Upper Circumpolar Waters (LCPW, UCPW), respectively. The daily mean velocity data from 1–3 February 1999 to 24–26 February 2000 were analyzed, and variability of the DWBCs was clarified. Although the current meters did not entirely cover the western branch current of the DWBC composed of two or three streams, a stream of the western branch current was observed at a depth of 4700 m at ML4 or 4260 m at ML5 for more than half of the observation period. The stream had a mean velocity of 3.7 cm s−1 and alternated between ML4 and ML5 at 20- to 40-day intervals without occupying both of ML4 and ML5 simultaneously. This shows that the width of the stream is less than 120 km (distance between ML4 and ML5), and the position changes in a similar range. In contrast to the velocity of the eastern branch current of the DWBC, that of the western branch current did not decrease with decreasing depths to 4000 m. This reflects the vertical division into the branch currents by the bifurcation of the DWBC. The western branch current of the DWBC is located at the deep side of the countercurrent which was almost always observed at depths of 3880 and 4080 m at ML3. The countercurrent was thought to be the return flow of the western branch current that is partly reversed in the East Mariana Basin. The previous estimate of geostrophic transport of LCPW at the time of the mooring deployment was corrected to 1.4 Sv (106 m3 s−1) in the western branch current, 1.7 Sv in the countercurrent, and 1.1 Sv in the inflow to the East Caroline Basin. The upper deep current was located over the slope of the Solomon Rise with water depth less than 4500 m including ML1–ML3. It flowed at depths of approximately 2000–3500 m with the highest velocity in the middle of this layer and seldom reached the near-bottom where eddy-like disturbances existed. Its volume transport at the mooring deployment was 10.4 Sv. The upper deep current during the first half of the observation period had double cores divided by the countercurrent at ML1, whereas that during the second half had a single core, as the countercurrent at ML1 disappeared in early September 1999. The vector mean velocities of the upper deep current were 5.0 (2650 m, ML2) and 3.6 cm s−1 (1880 m, ML3) during the first half of the observation period and 7.0 cm s−1 (2670 m, ML1) during the second half; they ranged from 3 to 7 cm s−1. Similarly, those of the countercurrent at ML1 during the first half were 6.4, 3.8, 4.6 cm s−1 (2170, 2670, 3570 m).  相似文献   

15.
16.
17.
18.
律明坤  臧楠  王凡 《海洋科学》2017,41(10):67-76
随着海洋技术的发展,中尺度的海洋过程越来越多的被揭示,中尺度涡旋作为重要的中尺度海洋过程,已经被大量的研究。但对于热带西北太平洋海区,中尺度涡旋特征的空间分布、季节变化以及移动规律等方面的研究还有所欠缺。本文使用Chelton提供的涡旋数据集,统计分析了热带西北太平洋海区涡旋特征的空间分布,发现以往研究较少的北赤道逆流(North Equatorial Countercurrent,NECC)区(A海区,120°~180°E,4°~6°N)较临近海域生成涡旋数量更多,涡旋半径、振幅、生命周期及非线性强度更大,移动距离更远,并且A海区涡旋经向移动距离服从伽马分布。涡旋在靠近西边界的区域更易向南移动,而在西边界以东的区域更易向北移动。A海区涡旋的生成数量具有明显的季节变化,主要受到流场剪切强度的影响。同时ENSO会对该区涡旋生成产生影响,其影响机制需要进一步的研究。  相似文献   

19.
20.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号