首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present the stellar parameters of the individual components of the two old close binary systems HIP 14075 and HIP 14230 using synthetic photometric analysis. These parameters are accurately calculated based on the best match between the synthetic photometric results within three different photometric systems with the observed photometry of the entire system. From the synthetic photometry, we derive the masses and radii of HIP 14075 as \({\mathcal {M}}^A=0.99\pm 0.19 \mathcal {M_\odot }\), \(R_{A}=0.877\pm 0.08 R_\odot \) for the primary and \({\mathcal {M}}^B=0.96\pm 0.15 \mathcal {M_\odot }\), \(R_{B}=0.821\pm 0.07 R_\odot \) for the secondary, and of HIP 14230 as \({\mathcal {M}}^A=1.18\pm 0.22 \mathcal {M_\odot }\), \(R_{A}=1.234\pm 0.05 R_\odot \) for the primary and \({\mathcal {M}}^B=0.84\pm 0.12 \mathcal {M_\odot }\) , \(R_{B}=0.820\pm 0.05 R_\odot \) for the secondary. Both systems depend on Gaia parallaxes. Based on the positions of the components of the two systems on a theoretical Hertzsprung–Russell diagram, we find that the age of HIP 14075 is \(11.5\pm 2.0\) Gyr and of HIP 14230 is \(3.5\pm 1.5\) Gyr. Our analysis reveals that both systems are old close binary systems (\(\approx > 4\) Gyr). Finally, the positions of the components of both the systems on the stellar evolutionary tracks and isochrones are discussed.  相似文献   

2.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

3.
Pulsation period changes in Mira type variables are investigated using the stellar evolution and nonlinear stellar pulsation calculations. We considered the evolutionary sequence of stellar models with initial mass \({M_{ZAMS}} = \;3{M_ \odot }\) and population I composition. Pulsations of stars in the early stage of the asymptotic giant branch are shown to be due to instability of the fundamental mode. In the later stage of evolution when the helium shell source becomes thermally unstable the stellar oscillations occur in either the fundamental mode (for the stellar luminosuty \(L < 5.4 \times {10^3}{L_ \odot }\)) or the first overtone (\(L > 7 \times {10^3}{L_ \odot }\)). Excitation of pulsations is due to the κ-mechanism in the hydrogen ionization zone. Stars with intermediate luminosities \(5.4 \times {10^3}{L_ \odot } < L < 7 \times {10^3}{L_ \odot }\) were found to be stable against radial oscillations. The pulsation period was determined as a function of evolutionary time and period change rates \(\dot \Pi \) were evaluated for the first ten helium flashes. The period change rate becomes the largest in absolute value \((\dot \Pi /\Pi \approx - {10^{ - 2}}y{r^{ - 1}})\) between the helium flash and the maximum of the stellar luminosity. Period changes with rate \(\left| {\dot \Pi /\Pi } \right| \geqslant - {10^{ - 3}}y{r^{ - 1}}\) take place during ≈500 yr, that is nearly one hundredth of the interval between helium flashes.  相似文献   

4.
We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (~166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3–150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\({\dot{m}}_{d}\)), sub-Keplerian accretion rate (\({\dot{m}}_{h}\)), shock location (\(r_{s}\)) and black hole mass (\(M_{\mathit{bh}}\)) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as \(L^{\mathrm{obs}}_{\mathrm{jet}} \sim3\mbox{--}6 \times10^{37}~\mbox{erg}\,\mbox{s}^{-1}\) during one of the observed radio flares which indicates that jet power corresponds to 8–16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (~14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2–7.9 \(M_{\odot}\) with 90% confidence.  相似文献   

5.
To investigate the \(M_\bullet -\sigma \) relation, we consider realistic elliptical galaxy profiles that are taken to follow a single power-law density profile given by \(\rho (r) = \rho _{0}(r/ r_{0})^{-\gamma }\) or the Nuker intensity profile. We calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both cases. We derive the distribution function f(E) of the stars in the presence of the supermassive black hole (SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius. For the typical range of values for masses of SMBH, we obtain \(M_{\bullet } \propto \sigma ^{p}\) for different profiles. An analytical relation \(p = (2\gamma + 6)/(2 + \gamma )\) is found which is in reasonable agreement with observations (for \(\gamma = 0.75{-}1.4\), \(p = 3.6{-}5.3\)). Assuming that a proportionality relation holds between the black hole mass and bulge mass, \(M_{\bullet } =f M_\mathrm{b}\), and applying this to several galaxies, we find the individual best fit values of p as a function of f; also by minimizing \(\chi ^{2}\), we find the best fit global p and f. For Nuker profiles, we find that \(p = 3.81 \pm 0.004\) and \(f = (1.23 \pm 0.09)\times 10^{-3}\) which are consistent with the observed ranges.  相似文献   

6.
By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at \(60\,\mu \hbox {m}\) and \(100\,\mu \hbox {m}\) IRIS maps. By checking these with AKARI maps (\(90\,\mu \hbox {m}\) and \(140\,\mu \hbox {m}\)), two new cavity-like structures (sizes \(\sim \) \( 2.7\,\hbox {pc} \times 0.8\,\hbox {pc}\) and \(\sim \) \( 1.8\,\hbox {pc} \times 1\,\hbox {pc}\)) located at R.A. (\(\hbox {J}2000)=14^{h}41^{m}23^{s}\) and Dec. \((\hbox {J}2000)=-64^{\circ }04^{\prime }17^{{\prime }{\prime }}\) and R.A. \((\hbox {J}2000)=05^{h}05^{m}35^{s}\) and Dec. \((\hbox {J}2000)=-\,69^{\circ }35^{\prime } 25^{{\prime }{\prime }}\) were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be \(3.2\pm 0.9\,\hbox {K}\) and \(4.1\pm 1.2\,\hbox {K}\), respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.  相似文献   

7.
This study’s objective was to exploit infrared VVV (VISTA Variables in the Via Lactea) photometry for high latitude RRab stars to establish an accurate Galactic Centre distance. RRab candidates were discovered and reaffirmed (\(n=4194\)) by matching \(K_{s}\) photometry with templates via \(\chi ^{2}\) minimization, and contaminants were reduced by ensuring targets adhered to a strict period-amplitude (\(\Delta K_{s}\)) trend and passed the Elorietta et al. classifier. The distance to the Galactic Centre was determined from a high latitude Bulge subsample (\(|b|>4^{\circ}\), \(R_{\mathit{GC}}=8.30 \pm 0.36\) kpc, random uncertainty is relatively negligible), and importantly, the comparatively low color-excess and uncrowded location mitigated uncertainties tied to the extinction law, the magnitude-limited nature of the analysis, and photometric contamination. Circumventing those problems resulted in a key uncertainty being the \(M_{K_{s}}\) relation, which was derived using LMC RRab stars (\(M_{K_{s}}=-(2.66\pm 0.06) \log {P}-(1.03\pm 0.06)\), \((J-K_{s})_{0}=(0.31\pm 0.04) \log {P} + (0.35\pm 0.02)\), assuming \(\mu _{0,\mathit{LMC}}=18.43\)). The Galactic Centre distance was not corrected for the cone-effect. Lastly, a new distance indicator emerged as brighter overdensities in the period-magnitude-amplitude diagrams analyzed, which arise from blended RRab and red clump stars. Blending may thrust faint extragalactic variables into the range of detectability.  相似文献   

8.
The most used method to calculate the coronal electron temperature [\(T_{\mathrm{e}} (r)\)] from a coronal density distribution [\(n_{\mathrm{e}} (r)\)] is the scale-height method (SHM). We introduce a novel method that is a generalization of a method introduced by Alfvén (Ark. Mat. Astron. Fys. 27, 1, 1941) to calculate \(T_{\mathrm{e}}(r)\) for a corona in hydrostatic equilibrium: the “HST” method. All of the methods discussed here require given electron-density distributions [\(n_{\mathrm{e}} (r)\)] which can be derived from white-light (WL) eclipse observations. The new “DYN” method determines the unique solution of \(T_{\mathrm{e}}(r)\) for which \(T_{\mathrm{e}}(r \rightarrow \infty) \rightarrow 0\) when the solar corona expands radially as realized in hydrodynamical solar-wind models. The applications of the SHM method and DYN method give comparable distributions for \(T_{\mathrm{e}}(r)\). Both have a maximum [\(T_{\max}\)] whose value ranges between 1?–?3 MK. However, the peak of temperature is located at a different altitude in both cases. Close to the Sun where the expansion velocity is subsonic (\(r < 1.3\,\mathrm{R}_{\odot}\)) the DYN method gives the same results as the HST method. The effects of the other free parameters on the DYN temperature distribution are presented in the last part of this study. Our DYN method is a new tool to evaluate the range of altitudes where the heating rate is maximum in the solar corona when the electron-density distribution is obtained from WL coronal observations.  相似文献   

9.
We have applied the close binary system analysis program WinFitter, with its physically detailed fitting function, to an intensive study of the complex multiple system Kepler-13 using photometry data from all 13 short cadence quarters downloaded from the NASA Exoplanet Archive (NEA) (http://exoplanetarchive.ipac.caltech.edu). The data-point error of our normalized, phase-sequenced and binned (380 points per bin: 0.00025 phase interval) flux values, at 14 ppm, allows the model’s specification for the mean reference flux level of the system to a precision better than 1 ppm. Our photometrically derived values for the mass and radius of KOI13.01 are \(6.8\pm0.6~\mbox{M}_{\mathrm{J}}\) and \(1.44\pm0.04~\mbox{R}_{\mathrm{J}}\). The star has a radius of \(1.67\pm0.05~\mbox{R}_{\odot}\). Our modelling sets the mean of the orbital inclination \(i\) at \(94.35\pm0.14^{\circ}\), with the star’s mean precession angle \(\phi_{p}\)\(49.1\pm5.0^{\circ}\) and obliquity \(\theta_{o}\)\(67.9 \pm 3.0^{\circ}\), though there are known ambiguities about the sense in which such angles are measured.Our findings did not confirm secular variation in the transit modelling parameters greater than their full correlated errors, as argued by previous authors, when each quarter’s data was best-fitted with a determinable parameter set without prejudice. However, if we accept that most of the parameters remain the same for each transit, then we could confirm a small but steady diminution in the cosine of the orbital inclination over the 17 quarter timespan. This is accompanied by a slight increase of the star’s precession angle (less negative), but with no significant change in the obliquity of its spin axis. There are suggestions of a history of strong dynamical interaction with a highly distorted planet rotating in a 3:2 resonance with its revolution, together with a tidal lag of \(\sim30~\mbox{deg}\). The mean precessional period is derived to be about 1000 y, but at the present time the motion of the star’s rotation axis appears to be supporting the gravitational torque, rather than providing the balance against it that would be expected over long periods of time.The planet has a small but detectable backwarming effect on the star, which helps to explain the difference in brightness just after transit and just before occultation eclipses. In assessing these findings it is recognized that sources of uncertainty remain, notably with possible inherent micropulsational effects, variations from other components of the multiple star, stellar activity, differential rotation and the neglect of higher order terms (than \(r_{1}^{5}\)) in the fitting function, where \(r_{1}\) is the ratio of the radius of the star to the mean orbital separation of planet and host star.  相似文献   

10.
More than 80 giant planets are known by mass and radius. Their interior structure in terms of core mass, number of layers, and composition however is still poorly known. An overview is presented about the core mass M core and envelope mass of metals M Z in Jupiter as predicted by various equations of state. It is argued that the uncertainty about the true H/He EOS in a pressure regime where the gravitational moments J 2 and J 4 are most sensitive, i.e. between 0.5 and 4 Mbar, is in part responsible for the broad range \(M_{\mathit{core}}=0{-}18\:M_{\oplus }\), \(M_{Z}=0{-}38\:M_{\oplus }\), and \(M_{\mathit{core}}+M_{Z}=14{-}38\:M_{\oplus }\) currently offered for Jupiter. We then compare the Jupiter models obtained when we only match J 2 with the range of solutions for the exoplanet \(\mathrm{GJ}\:436\mathrm{b}\), when we match an assumed tidal Love number k 2 value.  相似文献   

11.
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, \(z\sim \) 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at \(\approx \)10\(^4\) K. We show that even under the existing abundance limits, the primordial black holes of masses \(\gtrsim \)10\(^{-2}M_\odot \), can heat the collapsing gas to an extent that the \(\mathrm{H}_2\) formation is inhibited. The collapsing gas can maintain its temperature at \(10^4\) K till the gas reaches a critical density \(n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}\), at which the roto-vibrational states of \(\mathrm{H}_2\) approaches local thermodynamic equilibrium and \(\mathrm{H}_2\) cooling becomes inefficient. In the absence of \(\mathrm{H}_2\) cooling, the temperature of the collapsing gas stays at \(\approx \)10\(^4\) K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.  相似文献   

12.
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as \(t\rightarrow +\infty \) of the Runge–Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity \(e_{\infty }\) with \(0\le e_{\infty } \le 1\). The orbits satisfying \(e_{\infty } <1\) approach the singularity by an elliptic spiral and the corresponding solutions \(x(t)=r(t)e^{i\theta (t)}\) have a norm r(t) that goes to zero like a negative exponential and an argument \(\theta (t)\) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say \(T_{n+1} -T_n\), goes to zero as \(\frac{1}{n}\).  相似文献   

13.
We estimate the electron density, \(n_{\mathrm{e}}\), and its spatial variation in quiescent prominences from the observed emission ratio of the resonance lines Na?i?5890 Å (D2) and Sr?ii?4078 Å. For a bright prominence (\(\tau_{\alpha}\approx25\)) we obtain a mean \(n_{\mathrm{e}}\approx2\times10^{10}~\mbox{cm}^{-3}\); for a faint one (\(\tau _{\alpha }\approx4\)) \(n_{\mathrm{e}}\approx4\times10^{10}~\mbox{cm}^{-3}\) on two consecutive days with moderate internal fluctuation and no systematic variation with height above the solar limb. The thermal and non-thermal contributions to the line broadening, \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\), required to deduce \(n_{\mathrm{e}}\) from the emission ratio Na?i/Sr?ii cannot be unambiguously determined from observed widths of lines from atoms of different mass. The reduced widths, \(\Delta\lambda_{\mathrm{D}}/\lambda_{0}\), of Sr?ii?4078 Å show an excess over those from Na?D2 and \(\mbox{H}\delta\,4101\) Å, assuming the same \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\). We attribute this excess broadening to higher non-thermal broadening induced by interaction of ions with the prominence magnetic field. This is suggested by the finding of higher macro-shifts of Sr?ii?4078 Å as compared to those from Na?D2.  相似文献   

14.
This paper reviews the recent progress in the study of the intra-day variability (IDV) of Sagitarrius A* (Sgr A*), the best known supermassive black hole candidates with a dark mass concentration of 4 × 10\(^6 M_{\odot}\) at the center of our galaxy.  相似文献   

15.
16.
The UV properties of 1152 Markarian galaxies have been investigated based on GALEX data. These objects have been investigated also in other available wavelengths using multi-wavelength data from X-ray to radio. Using our classification for activity types for 779 Markarian galaxies based on SDSS spectroscopy, we have investigated these objects on the GALEX, 2MASS and WISE color-magnitude and color-color diagrams by the location of objects of different activity types and have revealed a number of loci. UV contours overplotted on the optical images revealed additional structures, particularly spiral arms of a number of Markarian galaxies. UV (FUV and NUV) and optical absolute magnitudes and luminosities have been calculated showing graduate transition from AGN to Composites, HIIs and Absorption line galaxies from (average \(M\)) \(-17.56^{m}\) to \(-15.20^{m}\) in FUV, from \(-18.07^{m}\) to \(-15.71^{m}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(-21.14^{m}\) to \(-19.42^{m}\) in optical wavelengths and from (average \(L\)) \(7\times10^{9}\) to \(4 \times 10^{8}\) in FUV, from \(1\times 10^{10}\) to \(5\times10^{8}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(7\times10^{10}\) to \(1\times10^{10}\) in optical wavelengths.  相似文献   

17.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

18.
Recently we (Kahler and Ling, Solar Phys.292, 59, 2017: KL) have shown that time–intensity profiles [\(I(t)\)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [\(\alpha\) and \(\beta\)]. We now look for a simple correlation between an event peak energy intensity [\(I_{\mathrm{p}}\)] and the time integral of \(I(t)\) over the event duration: the fluence [\(F\)]. We first ask how the ratio of \(F/I_{\mathrm{p}}\) varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both \(F\) and \(I_{\mathrm{p}}\) were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4?–?13 MeV band to \(E > 100~\mbox{MeV}\). Within each group of SEP events, we find a very robust correlation (\(\mathrm{CC} > 0.90\)) in log–log plots of \(F\)versus\(I_{\mathrm{p}}\) over four decades of \(I_{\mathrm{p}}\). The ratio increases from western to eastern longitudes. From the value of \(I_{\mathrm{p}}\) for a given event, \(F\) can be estimated to within a standard deviation of a factor of \({\leq}\,2\). Log–log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of \({<}\,1\) and decreasing with increasing energy for their four energy ranges from \(E > 10~\mbox{MeV}\) to \({>}\,100~\mbox{MeV}\). This difference is not explained.  相似文献   

19.
The eruption of a large quiescent prominence on 17 August 2013 and an associated coronal mass ejection (CME) were observed from different vantage points by the Solar Dynamics Observatory (SDO), the Solar-Terrestrial Relations Observatory (STEREO), and the Solar and Heliospheric Observatory (SOHO). Screening of the quiet Sun by the prominence produced an isolated negative microwave burst. We estimated the parameters of the erupting prominence from a radio absorption model and measured them from 304 Å images. The variations of the parameters as obtained by these two methods are similar and agree within a factor of two. The CME development was studied from the kinematics of the front and different components of the core and their structural changes. The results were verified using movies in which the CME expansion was compensated for according to the measured kinematics. We found that the CME mass (\(3.6 \times 10^{15}\mbox{ g}\)) was mainly supplied by the prominence (\(\approx 6 \times 10^{15}\mbox{ g}\)), while a considerable part drained back. The mass of the coronal-temperature component did not exceed \(10^{15}\mbox{ g}\). The CME was initiated by the erupting prominence, which constituted its core and remained active. The structural and kinematical changes started in the core and propagated outward. The CME structures continued to form during expansion, which did not become self-similar up to \(25~\mathrm{R}_{\odot }\). The aerodynamic drag was insignificant. The core formed during the CME rise to \(4~\mathrm{R}_{\odot }\) and possibly beyond. Some of its components were observed to straighten and stretch outward, indicating the transformation of tangled structures of the core into a simpler flux rope, which grew and filled the cavity as the CME expanded.  相似文献   

20.
Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984?–?1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, \(\sim130\) CME-rays, than during SMM. Important results include: The occurrence rate of the rays is \(\sim11~\%\) of all CMEs during solar minimum, but decreases to \(\sim7~\%\) at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3?–?4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is \(\sim12~R_{\odot}\), with the longest current sheet of \(18.5~R_{\odot}\). The mean CS growth rates are \(188~\mbox{km}\,\mathrm{s}^{-1}\) at minimum and \(324~\mbox{km}\,\mathrm{s}^{-1}\) at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of \(\sim350~\mbox{km}\,\mathrm{s}^{-1}\) with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within \(\sim1\) day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic field in the aftermath of CMEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号